期刊文献+

基于积式决策的全方位移动双臂机器人连续轨迹任务多目标规划

Multi-objective Planning of Continuous Trajectory Task for an Omni-directional Mobile Dual-Arm Robot Based on Product Arbitration
原文传递
导出
摘要 OMDAR(全方位移动双臂机器人)的运动规划算法需要同时兼顾不同类型、量纲、幅值等多重优化目标.本文分析了受约束OMDAR系统的多目标运动规划任务的数学建模与求解方法.在积式决策多目标优化算法框架下,将OMDAR系统连续轨迹运动规划需求与相关约束建模为乘积形式单一优化目标函数,采用高斯巡游粒子群优化算法(GR-PSO),可靠有效地实现了问题的求解.同时,将GR-PSO算法与经典非线性优化SQP算法进行对比,以9重目标优化导引下的连续轨迹路径规划为实例,证明了GR-PSO算法的有效性与优势. The motion planning algorithm of omni-directional mobile dual-arm robot (OMDAR) must cope with a group of optimization criteria simultaneously, such as different types, dimensions and ranges. The mathematical modeling method and resolving algorithm of the constrained OMDAR multi-objective motion planning mission are analyzed. Based on the product arbitration based multi-objective optimization algorithm, motion planning of the continuous trajectory of OMDAR is modeled as a single objective function which is consWucted with the product of multi-objective performance functions and constraints. The problem is successfully resolved with the Gaussian rovering particle swarm optimization (GR-PSO) algorithm. To compare the performance of the GR-PSO algorithm and the classical sequential quadratic optimization (SQP) algorithm, continuous trajectory planning governed by 9-criteria optimization functions is resolved. The effectiveness and advantage of the GR-PSO are verified.
出处 《机器人》 EI CSCD 北大核心 2013年第2期178-185,共8页 Robot
基金 上海市科技人才计划资助项目(11R21421400)
关键词 轨迹规划 多目标 积式决策 粒子群算法 trajectory planning multi-objective product arbitration particle swarm optimization
  • 相关文献

参考文献1

二级参考文献29

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2Pareto V. Manual of political economy[M]. New York, USA: Kelley, 1971.
  • 3Salukvadze M E. Vector-valued optimization problems in con- trol theory[M]. New York, USA: Academic Press, 1979.
  • 4Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
  • 5van Veldhuizen D A, Lamont G B. Multiobjective evolution- ary algorithms: Analyzing the state-of-the-art[J]. Evolutionary Computation, 2000, 8(2): 125 - 147.
  • 6Johan A. Multiobjective optimization in engineering design - Applications to fluid power systems[D]. Sweden: Linkrping University, 2001.
  • 7Das I, Dennis J E. A closer look at drawbacks of minimiz- ing weighted sums of objectives for Pareto set generation in multicriteria optimization problems[J]. Structural Optimization, 1997, 14(1): 63-69.
  • 8Bridgman P W. Dimensional analysis[M]. New Haven, USA: Yale University Press, 1922.
  • 9Gerasimov E N, Repko V N. Multicriterial optimization[J]. So- viet Applied Mechanics, 1978, 14(11): 1179-1184.
  • 10Rentmeesters M J, Tsai W K, Lin K J. A theory of lexicographic multi-criteria optimization[C]//Second 1EEE International Con- ference on Engineering of Complex Computer Systems. Piscat- away, NJ, USA: IEEE, 1996: 76-79.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部