期刊文献+

利用分形法表征光学元件中高频相位畸变 被引量:6

Evaluating middle-high frequency phase distortion of optics by fractal method
下载PDF
导出
摘要 针对神光Ⅲ主机装置使用的光学元件,基于分形理论,分析中高频相位畸变的统计分布特征,指出其满足分数布朗随机场,并利用结构函数法对分形维数进行计算,统计结果显示,大口径钕玻璃片的分形维数在2.34~2.43之间。利用局部稳态的随机中点位移法,提出一种新的表征光学元件相位的方法,将分形维数作为参数,可衡量中高频相位畸变,对高功率激光光学元件的评价有参考意义。 Based on the fractal theory, this paper analyzed statistical distribution features of middle-high frequency phase distortion of the optics for Shenguang-HI laser facility. The middle-high frequency phase distribution is found to be consistent with the model of fractional Brownian random field. The fractal dimension was calculated by structure function. The fractal dimension of large-aperture neodymium-doped phosphate amplifier glass is distributed between 2.34 and 2.43. A method of phase simulation by random midpoint-displacement was presented. In this method, the fractal dimension can be viewed as a parameter for estimating phase distortion, which helps to evaluate the high laser optics.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第5期1171-1175,共5页 High Power Laser and Particle Beams
关键词 光学元件 相位畸变 分形法 分数布朗随机场 钕玻璃 optics phase distortion fractal method fractional Brownian random field neodymium-doped phosphateamplifier glass
  • 相关文献

参考文献10

  • 1Wolfe C R, Lawson J K. The measurement and analysis of wavefront structure from large aperture ICF optics[C]//Proc of SPIE. 1997, 2633 : 361-383.
  • 2刘红婕,景峰,左言磊,胡东霞,粟敬钦,彭志涛,周维,李强,张昆.激光波前功率谱密度与焦斑旁瓣的关系[J].中国激光,2006,33(4):504-508. 被引量:10
  • 3Elson J M, Bennett J M. Calculation of the power spectral density from surface profile data[J]. Appl Opt, 1995, 34(1):201-208.
  • 4柴立群,徐建程,许乔.加窗后波前功率谱密度的计算值修正[J].强激光与粒子束,2005,17(12):1835-1838. 被引量:4
  • 5Williams W, Auerbach J, Hunt J, et al. NIF optics phase gradient specification[R]. 1997, UCRL-ID-127297.
  • 6Pentland A P. Fractal-based description of natural scenes[J]. IEEE Trans on Pattern Anal Mach Intell, 1984, 6(6) :661 -674.
  • 7Mandelbro B. Fractal geometry of nature[M]. San Francisco: Freeman, 1982.
  • 8MajumdarA, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. ASME Journal of Tribology, 1990, 112:205- 216.
  • 9邓青华,张小民,景峰,刘兰琴,粟敬钦.光学元件低频位相噪声的空间尺度[J].强激光与粒子束,2002,14(4):508-510. 被引量:13
  • 10Yokoya H. Fractal-based analysis and interpolation of 3D nature surface shapes and their application to terrain modeling[J]. Computer Vi- sion and Graph Image Processing, 1989, 46:284-302.

二级参考文献12

共引文献24

同被引文献74

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部