期刊文献+

高功率微波及材料特性参数对沿面击穿的影响 被引量:3

Numerical investigation of dielectric window breakdown with different high-power microwave and material characteristic parameters
下载PDF
导出
摘要 为研究高功率微波及材料特性参数对介质沿面闪络击穿过程的影响,采用自编的1D3VPIC-MCC程序,通过粒子模拟手段,得到了电子与离子数目、电子及离子密度分布、空间电荷场时空分布、电子平均能量、放电功率、表面沉积功率、激发电离损耗功率、电离频率等重要物理量。结果表明:电离频率随场强增加而增加,达到饱和后缓慢下降,强场诱发的二次电子数目更多导致本底沉积功率增高;电离频率随频率减小而增加,达到饱和后缓慢下降,频率太高会抑制次级电子倍增;因此,低频强场下击穿压力较大;反射引发表面电场下降及磁场增加效应,降低表面场强虽使表面击穿压力下降,但磁场的增加会导致二次电子倍增起振时间缩短,且会增加器件内部击穿风险;圆极化相对线极化诱导二次电子数目更多、本底沉积功率更高,击穿风险增加;短脉冲产生电子、离子总数少,平均能量低,沉积功率低,击穿风险低于长脉冲;脉冲上升时间的缩短和延长,只会提前或推后击穿时间,并不会改善击穿压力;材料二次电子发射率的增加会给击穿造成巨大压力,表面光滑度对击穿过程影响不大;电离频率和电子平均能量随释气压强增加均先增加后减小,低气压二次电子倍增占优,高气压碰撞电离占优。 For investigating the influence of high-power microwave and material characteristic parameters on flashover and breakdown on dielectric surfaces, a 1D3V PIC-MCC code is adopted in this simulation. By using this code, the number of electrons and ions, electron and ion density distributions, time and space distribution of space charge field, average electron energy, discharge power, deposited power, excitation and ionization loss power, and ionization frequency are studied numerically in detail. Ionization frequency increases with electric-field increasing, and then reaches to saturation and decreases slowly; higher value of electric-field causes more secondary electrons to form higher deposited power. Ionization frequency increases with microwave frequency decreasing, and then reaches to saturation and decreases slowly; higher frequency may suppress multipactor discharge. Thus high-power microwaves with higher value of electric-field and lower frequency is easier to induce breakdown. Reflection causes electric-field decrease and magnetic-filed increase on dielectric surfaces, which leads to the decrease of ionization frequency and secondary electron decrease, the shortening of the oscillation time of multipactor discharge, and the breakdown risk increase of the inner region of device. Compared with linear polarization, circular polarization causes more secondary electrons to form higher deposited power, and the breakdown risk increases. Shorter pulses produce fewer electrons and ions with lower average energy, which form lower deposited power, so high-power microwaves with long pulses are easier to induce breakdown. Longer rise time of pulses causes longer breakdown time, but could not decrease the breakdown risk. Compared with surface roughness, higher value of materials secondary emission yield increases breakdown risk markedly. Ionization frequency and average electron energy increase firstly, and then decrease with gas pressure increasing. Multipactor discharge dominates at low pressure, and ionization dominates at high pressure.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第5期1215-1220,共6页 High Power Laser and Particle Beams
基金 中国工程物理研究院科学技术发展基金项目(2012B0402064 2009B0402046) 国家高技术发展计划项目 国家自然科学基金项目(11105018)
关键词 高功率微波 介质沿面闪络击穿 二次电子倍增 蒙特卡罗碰撞 粒子模拟 high power microwave flashover and breakdown on dielectric surface multipactor Monte Carlo collision PIC simulation
  • 相关文献

参考文献12

  • 1Barker R J, Schamiloglu E. High power microwaves sources and technologies[M]. Beijing: Tsinghua University Press, 2005.
  • 2Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. J Appl Phys, 1999, 86 (3) : 1724-1728.
  • 3Neuber A, Edmiston G, Krile J, et al. Interface breakdown during high-power microwave transmission[J]. IEEE Trans on Magnetics, 2007, 43(1) :496-500.
  • 4Kishek R A, Lau Y Y. Multipaetor discharge on a dielectric[J]. Phys Rev Lett, 1998, 80(1) : 193 -196.
  • 5Zhang P, Lau Y Y, Franzi M, et al. Multipactor susceptibility on a dielectric with a bias de electric field and a background gas[J]. Phys Plasmas, 2011, 18:053508.
  • 6Kim H C, Verboncoeur J P. Modeling RF window breakdown: from vacuum multipactor to RF plasma[J]. IEEE Trans on Dielectr Electr Insul, 2007, 14(4) :766-772.
  • 7Nam S K, Verboneoeur J P. Effect of electron energy distribution function on the global model for high power microwave breakdown at high pressures[J]. Appl Phys Lett, 2008, 92:231502.
  • 8Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown threshold[J]. Phys Plasmas, 2011, 18 :055702.
  • 9郝西伟,张冠军,黄文华,秋实,陈昌华,方进勇.高功率微波作用下介质窗表面电子运动2维仿真[J].强激光与粒子束,2010,22(1):99-104. 被引量:7
  • 10蔡利兵,王建国.介质表面高功率微波击穿的数值模拟[J].物理学报,2009,58(5):3268-3273. 被引量:22

二级参考文献30

  • 1Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans on Electron Devices, 1989,36(9) :1963-1967.
  • 2Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New Jersey: IEEE Press, 2001:325-375.
  • 3Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high power microwaves[J]. IEEE Trans on Plasma Science,1998, 26(3) :296-303.
  • 4Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. J Appl Phys, 1999,86 (3) : 1724-1728.
  • 5Hemmert D, Neuber A, Dickens J, et al. Microwave magnetic field effects on high power microwave window breakdown[J]. IEEE Trans on Plasma Science ,2000,28(3) : 472-477.
  • 6Saito Y, Michizono S, Anami S, et al. Surface flashover on alumina RF windows for high-power use[J]. IEEE Trans on Eiectr Insul, 1993, 28(4) :566-573.
  • 7Michizono S, Saito Y, Yamaguchi S, et al. Dielectric materials for use as output window in high-power klystrons[J].IEEE Trans on Electr Insul,1993,28(4) :692-699.
  • 8Yamaguchi S, Saito Y, Anami S, et al. Trajectory simulation of multipactoring electrons in an S band pillbox RF window[J]. IEEE Trans on Nuclear Science, 1992,39(2) :278-282.
  • 9Kishe R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: historical review and recent theories[J]. Phys Plasmas,1998,5(5) :2120-2126.
  • 10Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Phys Rev Lett ,1998,80(1) : 193-196.

共引文献29

同被引文献30

  • 1Baker R J,Schamilogl E.高功率微波源于技术[M].北京:清华出版社,2004.
  • 2Hemmert D, Neuber A A,Dickens J,et al. Microwave magnetic field effects on high-power microwave window breakdown[J]. IEEETrans on Plasma Sci,2000, 28(3) : 472-477.
  • 3Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Phys Rev Lett, 1998,80(1) : 193-196.
  • 4Kim H C,Verboncoeur J P. Transition of window breakdown from vacuum multipactor discharge to rf plasma[J]. Phys Plasmas. 2006,13: 123506.
  • 5Chang C,Liu G Z,Huang H J,et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J]. Phys Plasmas,2009,16: 083501.
  • 6Wang J, Cai L, Zhu X,et al. Numerical simulations of high power microwave dielectric interface breakdown involving outgassing[J]. PhysPlasmas . 2010,17: 063503.
  • 7Sazontov A G,Nevchaev V E. Effects of rf magnetic field and wave reflection on multipactor discharge on a dielectric[J]. Phys Plasmas ,2010, 17: 033509.
  • 8Vaughan J R M. A new formula for secondary emission yield[J], IEEE Trans on Electron Dev, 1989 , 36(9) : 1963-1967.
  • 9Sazontov A G,Vladislav E. Statistical prediction of microwave window breakdown: Effects of RF magnetic field[J3. IEEE Trans on Plas-ma Sci, 2012, 40(2):451-462.
  • 10Vdovicheva N K, Sazontov A G,Semenov V E. Statistical theory of two-sided multipactor[J]. Radiophysics and Quantum Electronics ,2004, 47(8): 580-596.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部