期刊文献+

一类分数阶时滞微分系统的两度量稳定性

Stability of two measures for fractional order time-delay differential system
下载PDF
导出
摘要 讨论了一类分数阶时滞微分系统.首先,引入锥的概念,给出了锥值分数阶时滞微分系统的Lyapunov函数.其次,发展了比较定理,得到了关于分数阶时滞微分系统与微分系统的新的比较定理.最后,通过新的比较定理,给出分数阶时滞微分系统的两度量稳定性的判断准则. One kind of the fractional order time-delay system was discussed. Firstly, introduced the concept of cove, and given the Lyapunov function of cove-value fractional order time-delay differential sys- tem. Secondly, developed the comparison theorem, and got a new comparison theorem on the fractional order time-delay system and fractional system. Finally, concluded the stability criterion of two measures for fractional order time-delay system by the new comparison theorem.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2013年第2期113-117,共5页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(10971045)
关键词 分数阶微分系统 时滞 两度量稳定性 fractional order differential system time-delay stability of two measures
  • 相关文献

参考文献10

  • 1LAKSHMIKANTHAM V, LEELA S, VASUNDHARA D J. Theory of fractional dynamic systems[M]. Cambradge: Cambradge Academic Publishers, 2008.
  • 2MIHAILO P L, ALEKSANDAR M S. Finite-time stability analysis of fractional order time-delay systems:Gronwall's approach[J]. Mathematical and computer Modeling, 2009, 49: 475- 481.
  • 3KATJA K. Asymptotic properties of fractional delay differential equations[J]. Applied Mathematics and Computation, 2011, 218:1515 - 1532.
  • 4ZHANG Fengrong. A survey on the stability of fractional differential equation[J]. The european physical journal special tpoies, 2011, 193:27-47.
  • 5王培光,侯颖,刘静.一类分数阶微分方程的广义拟线性化方法[J].河北大学学报(自然科学版),2011,31(5):449-452. 被引量:2
  • 6LSKDHMIKSNYHSM V, LEELA S, SAMBANDHAM M. Lyapunov Theory for fractional differential equations[J]. Communications in Applied Analysis, 2008, 12:365- 376.
  • 7TRIGEASSOU J C, MAAMRI N, SABATIER J, et al. A Lyapunov approach to the stability of fractional differential e- quations[J]. Singnal Processing, 2011, 12:365 - 445.
  • 8LAKSHIMIKANTHAM V, LEELA S. Cone-valued Lyapunov functions[J]. Nonlinear Analysis, 1977, 1:215 -222.
  • 9LI Kaien, YANG Guowei. Cone-valued Lyapunov functions and stability for impulsive functional differential equations [J]. Nonlinear Analysis, 2008, 69:2184- 2191.
  • 10AKINYELE O, ADEYEYE J O. Cone-valued Lyapunov functions and stbility of hybrid systems[J]. Analysis, 2001, 8 203 - 214.

二级参考文献7

  • 1LAKSHMIKANTHAM V,VATSALA A S. Generalized quasilinearization for nonlinear problems[M]. Dordreeht:Kluwer Academic Publishers, 1998.
  • 2VASNUDHARA D J,MCRAE F A,DRICI Z. Generalized quasilinearization for fractional differential equations[J]. Comp Math Appl,2010,59(3) :1057--1062.
  • 3CAPUTO M. Linear models of dissipation whose Q is almost independent Ⅱ[J]. Geophys J R Astron, 1967,13 (5) :529- 539.
  • 4DIETHELM K, FORD N J. Analysis of fractional differential equations[J]. J Math Anal Appl, 2002,265 (2) : 229-- 248.
  • 5PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
  • 6GLOCKLE W G, NONNENMACHER T F. A fractional calculus approach to self simslar protein dynamics[J]. Biophys J, 1995,68(1):46--53.
  • 7KIRYAKORA V. Generalized fractional calculus and applieations[M]. New York: LongmanWiley,1994.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部