期刊文献+

基于鲁棒CKF的多传感器全信息融合算法 被引量:16

Multi-sensor all information fusion algorithm based on robust CKF
下载PDF
导出
摘要 为了克服不良测量的影响,改善多传感器的融合性能,提出一种基于鲁棒容积卡尔曼滤波(CKF)的多传感器全信息融合算法。基于新息协方差匹配原理构建鲁棒CKF,定义数据质量检测函数,根据测量数据质量选择鲁棒CKF或标准CKF作为子系统最优滤波算法。基于多传感器融合信息,建立子系统软故障检测算法;定义子系统故障系数,通过系统重构实现故障子系统的隔离。利用多传感器系统所能提供的最多信息,建立全信息融合算法。将所建算法应用于船舶动力定位测量系统的仿真实验中,与CKF、局部估计加权融合算法进行比较。仿真结果表明,鲁棒CKF及软故障检测函数提高了子系统的滤波鲁棒性,全信息融合算法进一步改善了系统的融合性能。仿真结果验证了所建算法的有效性。 To overcome the influence of abnormal measurements and improve the performance of multi- sensor fusion, based on robust cubature Kalman filter (CKF) a multi-sensor all information fusion algo- rithm is proposed. By the principle of innovation covariance matching, a robust CKF was built. A data quality detection function was defined. According to the measurements, the robust CKF or normal CKF was selected as the subsystem optimal filtering algorithm. With the estimation information of multi-sensor fusion, a subsystem soft fault detection function was presented. The subsystem fault factor was intro- duced, and the faulty subsystem is isolated by the system reconfiguration. A multi-sensor all information fusion method was proposed based on the all information of the system. These proposed methods were ap- plied to the vessel dynamic positioning system simulation. They were compared with normal CKF and lo- cal estimation weighted fusion algorithm. The simulation results show that the proposed robust CKF and the soft fault detection function improve the robustness and accuracy of subsystem filtering, and the all in- formation fusion algorithm has better performance. The simulation example verifies the effectiveness of the proposed algorithms.
出处 《电机与控制学报》 EI CSCD 北大核心 2013年第2期90-97,111,共9页 Electric Machines and Control
基金 国家高技术船舶科研项目(GJCB09001) 国家自然科学基金(NSFC60775060)
关键词 全信息融合 容积卡尔曼滤波 故障检测 故障隔离 鲁棒性 all information fusion cubature Kalman filter fault detection fault isolation robust
  • 相关文献

参考文献14

二级参考文献74

  • 1杨世宇,曹洲,薛玉雄.空间单粒子锁定及防护技术研究[J].核电子学与探测技术,2007,27(3):567-570. 被引量:8
  • 2张双成,高为广.基于系统误差及其协方差阵拟合的抗差自适应滤波[J].地球科学与环境学报,2005,27(2):60-62. 被引量:7
  • 3罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:126
  • 4安永红,夏昌浩.笼型异步电动机转子断条故障诊断技术[J].电力学报,2006,21(3):310-313. 被引量:8
  • 5Daly K C, Gai E, Harrison J V. Generalized likelihood test for FDI in redundant sensor configurations[J]. Journal of Guidance and Control, 1979, 2(2): 9-17.
  • 6Hall S R, Motyka P, Gai E, et al. In-flight parity vector compensation for FDI[J]. IEEE Transaction on Aerospace and Electronic System, 1983, 19(5): 668-675.
  • 7Sasoadek J Z, Wang O. Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle[C]//Proceedings of the 1999 IEEE International Conference on Robotic&Automation, 1999, 32(5): 2970-2975.
  • 8WANG Xin, ZHANG Dongxia. Optimization method of fault feature extraction of broken rotor bar in squirrel cage induction motors [ C ]//Proceedings of the 2010 IEEE International Conference on Information and Automation, June 20 - 23,2010, Harbin, China. 2010 : 1622 - 1625.
  • 9GIBBS G, SACHDEV S. Canada and the international space sta- tion program: overview and status [J]. Acta Astronaut, 2002, 51 (1) : 591 -600.
  • 10VERZIJDEN P, PETERSEN H. VISSER M. ERA performance measurements test results [ C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2002' ESTEC, November 19 - 21, Noordwijk, Netherlands. 2002:1-8.

共引文献92

同被引文献131

引证文献16

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部