期刊文献+

新型立方碳的第一性原理研究 被引量:1

First principles study on a novel cubic carbon
下载PDF
导出
摘要 利用最新的粒子群优化算法,发现一种新型立方碳结构(命名为sc-C20,=4.886),并对其性质及可能的合成方法进行了研究。在常压下sc-C20可以亚稳存在,当压力超过100GPa时,sc-C20比石墨稳定,表明其通过高压手段合成的可能性。通过对比晶格常数和晶面间距,发现sc-C20与实验合成的=4.86的i-碳结构相吻合,表明sc-C20有可能通过化学手段合成。电子能带结构计算表明sc-C20为宽带隙(4.20eV)半导体型碳,并且随着压力升高带隙呈现增大的趋势,sc-C20带隙的大小及变化规律与金刚石相似。sc-C20的体积模量和剪切模量很高,维氏硬度为94.4 GPa,与立方金刚石硬度相当。强度计算表明sc-C20抗拉强度的各向异性较弱,其中<111>方向的抗拉强度最高,为96.4 GPa。 A novel cubic carbon(termed as sc-C20 with 4.886 ? is proposed through employing the newly developed particle swarm optimization(PSO) algorithm.Furthermore,the properties and possible synthesis methods are investigated.The sc-C20 is metastable under ambient pressure,and is more stable than graphite at high-pressure(100 GPa),indicating that it can be synthesized through high-pressure.The similarity of the lattice parameters and-spacing between sc-C20 i-carbon with 4.86 ?implies that the former can be achieved through chemical methods.Electronic band structure calculations show that sc-C20 is a semiconductor with wide band gap of 4.20 eV,and the gap increase with pressure,similar to that of diamond.The sc-C20 has high bulk and shear moduli,and the Vickers hardness is 94.4 GPa,comparable with that of diamond,indicative of superhard nature.The tensile strength of sc-C20 is low,and the highest strength is 96.4 GPa along 111 direction.
出处 《燕山大学学报》 CAS 2013年第1期22-26,共5页 Journal of Yanshan University
基金 国家自然科学基金资助项目(51272227)
关键词 第一性原理 立方碳 超硬 宽带隙 i-碳 first principle cubic carbon superhardness wide band gap i-carbon
  • 相关文献

参考文献37

  • 1Strel'nitskii V E, Padalka V G, Vakula S I. Properties of the diamond-like carbon film produced by the condensation of a plas- ma stream with an RF potential [J]. Sov Phys Tech Phys, 1978,23 (2): 222.
  • 2Matyushenko N N, Strel'nitskii, Pis'ma V A. A dense new version ofcrysralline carbon C, [J]. Zh Eksp Teor Fiz, 1970,30: 218.
  • 3Bakai A S, Strel'nitskii V E. Structure of carbon films formed by the deposition of fast ions [J]. Sov Phys Tech Phys, 1981,26 (11): 1425-1426.
  • 4Liu P, Cui H, Yang G W. Synthesis of body-centered cubic carbon nanocrystals [J]. Cryst Growth Des, 2008,8 (2): 581-586.
  • 5Basharin A, Dozhdikov V, Dubinchuk V, et al.. Phases formed during rapid quenching of liquid carbon [J]. Technical Physics Let- ters, 2009,35 (5): 428-431.
  • 6Palatnik L S, Guscva M B, Babacv V G, et al.. Gamma-carbon [J]. Zh Eksp Tcor Fiz, 1984,87: 914-917.
  • 7Hirai H, Kondo K I. Modified phases of diamond formed under shock compression and rapid quenching [J]. Science, 1991,253 (5021): 772-774.
  • 8Yoo C S, Nellis W J, Sattler M L, et al.. Diamondlike metastable carbon phases from shock-compressed C,o films [J]. Appl Phys Lett, 1992,61 (3): 273-275.
  • 9Endo S,Idani N, Oshima R, et al..X-ray diffraction and transmission- electron microscopy of natural polycrystalline graphite recovered from high pressure [J]. Phys Rev B, 1994,49 (1): 22-27.
  • 10Yamada K, Sawaoka A B. Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mix- tures and their formation mechanism [J]. Carbon, 1994,32 (4): 665-673.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部