期刊文献+

基于3D直方图与爬山法的K-means车灯零件检测算法 被引量:1

K-MEANS ALGORITHM OF AUTOMOBILE LAMP PARTS INSPECTION BASED ON 3D HISTOGRAM AND CLIMBING HILL
下载PDF
导出
摘要 由于传统K-means聚类算法存在对初始值敏感和易陷入局部最优的缺陷,为了提高复杂性高的车灯零件分类的准确率,提出一种基于3D直方图与爬山法相结合的改进K-means的车灯零件检测算法。首先根据彩色车灯零件在颜色空间分布进行局部等间隔量化,得到自适应调节分辨率的3D颜色直方图。然后采用爬山法寻找局部等距量化的3D颜色直方图的极大值,根据极大值的特征动态地确定初始聚类数k和聚类中心。最后利用实际的车灯零件图像进行验证性实验。实验表明,该算法能准确检测出复杂性高的车灯零件,具有较好的稳定性和适用性。 Since traditional K-means clustering algorithm is sensitive to initial value and easy to fall into local optimum,in order to improve the accuracy of complex automobile lamp parts classification,a new K-means lamp parts inspection algorithm based on the combination of 3D histogram and climbing hill is introduced.First,the local equidistant quantisation is conducted according to the distribution of colour lamp parts in colour space,and 3D colour histogram with self-adaptive resolution is obtained.Then,the hill-climbing algorithm is employed to find the maximum value of 3D colour histogram which is locally quantified equidistantly,according to the characteristic of maximum value the initial clustering K and the clustering centre are adaptively determined.Finally,the practical lamp parts images are used to carry out validating experiment.Experiment demonstrates that the algorithm can accurately detect the complex lamp parts with fairly good stability and applicability.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第4期40-43,共4页 Computer Applications and Software
基金 国家自然科学基金项目(51075280) 上海市教育委员会重点学科项目(J50505)
关键词 K-MEANS 3D直方图 爬山法 车灯零件 彩色视觉 K-means 3D Histogram Hill-climbing algorithm Lamp parts Colour vision
  • 相关文献

参考文献6

二级参考文献30

  • 1HAN J W.KAMBER M.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.
  • 2Kurniawan A,Benech N,Tao Yufei.Towards High-dimensional Clustering[J].COMP,November,1999:1-2.
  • 3Aho A.V.Hopcroft J.E.,Ullman J.D.The Design and Analysis of Computer Algorithms[M].New York:Addison-Wesley Publishing Company 1974.189-195.
  • 4Ester M,Kriegel H P,Sander J.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases.Proc. 1996 Int.Conf.on Knowledge Discovery and Data Mining(KDD'96).Porland,OR, 1996-08:226.
  • 5Ankerst M,Breuning M,Kriegel H P.OPT1CS:Ordering Points to Identify the Clustering Structure.Proc. of 1999 ACM-SIGMOD Int.Conf. on Management of Data(SIGMOD'99),Philadelphia,PA,1999-06:49.
  • 6Wang W, Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining.Proc. of 1997 Int. Conf. on Very Large Data Bases(VLDB'97),Athens,Greece, 1997-08:186.
  • 7Agrawal R, Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Application.Proc. of 1998 ACM-S1GMOD Inc. on Conf. on Management of Data(S1GMOD'99),Seattle,WA, 1998-06:94.
  • 8Sheikholeslami G,Chatterjee S,Zhang A.WaveCIuster:A Multiresolution Clustering Approach for Very Large Spatial Database.Proc. of 1998 lnt.Conf, on Very Large Data Bases(VLDB'98),New York, 1998-08:428.
  • 9荻原将文,山口亨,古荻隆嗣.马炫译.人工神经网络与模糊信号处理[M].北京:科学出版社,2003.
  • 10Friedman J H,Bentley J L,Finkel R A.An Algorithm for Finding Best Matches in Logarihmic Expected Time[J].ACM Trans.on Math.Software,1977,3(3):209-226.

共引文献53

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部