期刊文献+

基于灰色系统理论和粒子滤波器的目标跟踪算法 被引量:2

TARGET TRACKING ALGORITHM BASED ON GRAY SYSTEM THEORY AND PARTICLE FILTER
下载PDF
导出
摘要 提出一种基于灰色系统理论和粒子滤波的目标跟踪算法,自适应调整搜索范围,并采用交叉熵理论来度量目标模型与粒子确定区域特征模型之间的相似度。先用粒子滤波算法对运动目标状态进行估计,确定目标中心位置,利用历史目标位置状态序列,通过灰色系统理论对下一帧目标状态进行预测;然后对重采样后的粒子的位置和粒子的搜索范围进行修正,采用交叉熵理论来衡量目标与粒子确定区域的特征模型之间的相似度。仿真结果表明,相比传统的粒子滤波算法,新算法具有更好的鲁棒性和跟踪精度。 This paper proposes a gray system theory and particle filter-based target tracking algorithm.It adjusts the search scope adaptively,and uses cross-entropy theory to measure the similarity between the model of target and the model of particle determined regional characteristics.First,the particle filter algorithm is employed to estimate the state of the moving targets and to determine the centre of the target,the state of next frame target is predicted using states sequence of historical target location and through gray system theory;then the position of the resampled particles and the search scope of the particles are amended,the cross-entropy theory is used to measure the similarity between the target and the feature model of the particles determined region.Simulation results show that compared with traditional particle filter,the new algorithm has better robustness and tracking accuracy.
作者 张静 邓金桥
出处 《计算机应用与软件》 CSCD 北大核心 2013年第4期131-134,共4页 Computer Applications and Software
基金 辽宁省教育厅科学研究项目(L2010202)
关键词 目标跟踪 粒子滤波 灰色系统 交叉熵 Target tracking Particle filter Gray system Cross-entropy
  • 相关文献

参考文献13

  • 1Alper Y, Omar J, Mubarak 'S. Object tracking: A survey [J]. ACM Com- puting Surveys, 2006, 38(4) : 1 - 45.
  • 2Han M, Sethiy A, Hua W, et al. A detection-based multiple object track- ing method [ C ]//International Conference of Image Processing. USA: IEEE computer Society Press, 2004,5 : 3065 - 3068.
  • 3Amlampalam M S, Maskell S, Gordon N, et al. A tutorial on particle fil- ters for online nonlinear/non-Ganssian Bayesian tracking [ J ]. IEEE Trans signal processing, 2002, 50(2) :174 - 188.
  • 4Isard M, Blake A. Condensation conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29(1):5-28.
  • 5董春利,董育宁,刘杰.基于粒子滤波和GVF-Snake的目标跟踪算法[J].仪器仪表学报,2009,30(4):828-833. 被引量:33
  • 6郭君斌,郭晓松,雷磊,薛冰.基于改进粒子滤波算法的人眼跟踪方法[J].仪器仪表学报,2010,31(8):1720-1725. 被引量:12
  • 7Jain A K. On an estimate of the Bhattacharyya distance [J]. IEEE Trans- actions on Systems, Man and Cybernetics 1976, 6(11 ): 763-766.
  • 8Isard M, Blake A. Condensation-conditional density propagation for visual tracking [ J ]. International Journal of Computer Vision, 1998,29 ( 1 ) : 5 - 28.
  • 9Espionage P, Soto A. Improving the selection and detection of visual land- marks through object tracking[ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW 08), 2008 : 1-7.
  • 10Fan J L, Wu Y, Dai S Y. Discriminative spatial attention for robust track- ing [ C ]//Computer Vision, ECCV 2010, Lecture Notes in Computer Sci- ence, 2010:480-493.

二级参考文献21

  • 1张勇,欧宗瑛,侯建华.基于主动轮廓模型的医学图像边界跟踪[J].仪器仪表学报,2002,23(z1):173-174. 被引量:7
  • 2TAN H,CHEN X M,JIANG M.Object tracking based on Snake and sequential Monte Carlo method[J].Sixth International Conference on Intelligent Systems Design and Applications,2006,2:364-367.
  • 3JAMASBI B,MOTAMEDI S A,BEHRAD A.Tracking vehicle targets with large aspect change[J].IEEE Workshop on Motion and Video Computing,2007:22.
  • 4XU C,PRINCE J L.Snakes,shapes,and gradient vector flow[J].IEEE Trans.Image Processing,1998,7:359-369.
  • 5BETSER A,VELA P,TANNENBAUM A.Automatic tracking of flying vehicles using geodesic snakes and Kalman filtering[J].43rd IEEE Conference on Decision and Control,2004,2:1649-1654.
  • 6KHANSARI M,RABIEE H R,ASADI M,et al.A robust object shape prediction algorithm in the presence of white Gaussian noise[J].Proceedings of 12th International Multi-Media Modelling Conference,2006:4-6.
  • 7ARULAMPALAM M,MASKELL S,GORDON N,et al.A tutorial on particle filters for on-line non-linear/non-aussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 8RATHI Y,VASWANI N,TANNENBAUM A,et al.Tracking deforming objects using particle filtering for geometric active contours[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2007,29(8):1470-1475.
  • 9CHENG J,YANG J,ZHOU Y,et al.Flexible background mixture models for foreground segmentation[J].Image and Vision Computing,2006,24(5):473-482.
  • 10CZYZ J,RISTIC B,MACQ B.A particle filter for joint detection and tracking of color objects[J].Image and Vision Computing,2007,25(8):1271-1281.

共引文献41

同被引文献7

  • 1徐开礼,朱志澄.构造地质学[M].北京:地质出版社,2006.
  • 2邓聚龙.灰色控制系统[M].武汉:华中工业大学出版社,1986.348-374.
  • 3赵鹏大.大数据时代数字找矿与定量评价[R].北京:中国地质大学,2013.
  • 4擎士伦.天然气工业[M].北京:石油工业出版社.2008.
  • 5Haun A R, Kabir C S, Saympour M. Simplified two- phase flow modeling in ~znlz~[J]. Journal d Petrolma Science and ~,2010,72(I) .42.49.
  • 6刘峰,高贵洪,刘加元,关增武,吕波.英买力复杂凝析气藏动态分析技术[J].天然气工业,2008,28(10):81-83. 被引量:3
  • 7杨泽超,申洪,余娟,刘继伟,杨智.低压低产气井自生气排水采气技术的研究与应用[J].钻采工艺,2014,37(3):63-66. 被引量:12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部