期刊文献+

基于角点运动约束的感兴趣区域提取算法

INTERESTED REGION EXTRACTION ALGORITHM BASED ON CORNER MOVING CONSTRAINTS
下载PDF
导出
摘要 传统光流法提取感兴趣区域时运算量巨大,不能满足实时性的要求。针对这一问题提出一种基于角点运动约束的感兴趣区域提取算法。算法利用Harris算法对视频图像进行角点检测,通过对角点区域进行预处理,提取出前景角点区域,在此基础上利用光流法建立角点区域光流场,通过建立运动约束和阈值处理提取运动目标前景。算法仿真结果显示:算法可以准确提取感兴趣区域,抗干扰能力强,可以满足实时性的要求。 Traditional optical flow method can not meet the requirement of real-time property due to huge computation workload when extracting the interested region.In light of this,we propose an algorithm for extracting interested region which is based on corner moving constraints.First,the new algorithm uses Harris algorithm to detect corners on the video image,by pre-processing the corner area to extract the corner area of the foreground.Secondly,on this basis the optical flow method is made use of to establish the optical flow field of corner area,by setting up motion constraint and threshold treatment to extract the foreground of moving target.Experimental results of the algorithm show that the algorithm can accurately extract the interested region,it is strong in anti-jamming and can meet real-time requirement.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第4期264-266,共3页 Computer Applications and Software
关键词 感兴趣区域提取 Harris角点算法 光流法 运动约束 Interested region extraction Harris corner point algorithms Optical flow method Motion constraint
  • 相关文献

参考文献3

二级参考文献12

  • 1朱娟娟,郭宝龙.电子稳像的特征点跟踪算法[J].光学学报,2006,26(4):516-521. 被引量:26
  • 2P J Besl, N D McKay. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2) : 239-256.
  • 3Yonghuai LIU. Improving ICP with easy implementation for free-form surface matching[J]. Pattern Recognition, 2004,37 (2) : 211-226.
  • 4B K P Horn, B G Schunck. Determining optical flow [J]. Artificial Intelligence, 1981, 17: 185--203.
  • 5Bruce D Lucas,Takeo Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision [A]. Proceedings of Imaging Understanding Workshop[C. 1981. 121-130.
  • 6Tomasi C, Kanade T. Detection and Tracking of Point features [R]. CMU-CS-91132, Pittsburgh: Carnegie Mello University School of Computer Science, 1991.
  • 7P Tissainayagam, D Suter. Assessing the performance of corner detectors for point feature traeking applications [J]. Image and Vision Computing, 2004, 22: 663-679.
  • 8Moravec H P. Towards automatic visual obstacle avoidance [A]. Proc 5th International Joint Conference on Artificial Intelligence[C]. 1977. 584-596.
  • 9范瑞霞,张俊.一种基于多分辨率的图像跟踪算法[J].计算机工程,2002,28(12):185-186. 被引量:7
  • 10王凌,冯华君,徐之海,李奇.一种基于光流场的复杂背景下人脸定位方法[J].计算机工程与应用,2003,39(8):68-70. 被引量:4

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部