期刊文献+

一种采用双势阱策略的小直径图分割方法 被引量:3

A SMALL DIAMETER GRAPH PARTITION METHOD WITH DOUBLE-WELL STRATEGY
下载PDF
导出
摘要 等周算法用于图像分割时存在迭代效率低的缺陷。提出一种新的双势阱策略,该策略采用度最大和度最小的图结点共同作为接地点,提高了线性方程的求解效率;同时用添加随机边的方法缩短图直径,减少了共轭梯度法的迭代量,进一步提高了算法的收敛速度。仿真实验结果表明,新算法提高等周算法迭代效率达20%以上。 Isoperimetric algorithm has the defect of low iterative efficiency when applied in image segmentation,so a new double-well strategy is proposed.In this strategy the image nodes of maximum degree and minimum degree are both used as the ground point,this improves the solution efficiency of linear equation;meanwhile,the method of adding random edges is introduced to shorten the graph diameter,so the numbers of iterations for conjugate gradient method is reduced,as a result the rate of convergence is further improved.Simulating experimental result shows,this new algorithm can efficiently raise the iteration efficiency of isoperimetric algorithm up to 20% or higher.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第4期275-278,共4页 Computer Applications and Software
关键词 图像分割 图论 等周算法 双势阱 随机边 Image segmentation Graph theory Isoperimetric algorithm Double well Random edges
  • 相关文献

参考文献10

  • 1Nikhil R Pal, Sankar K Pal. A Review on Image Segmentation Tech- niques[ J]. Pattern Recognition, 1993,26 (9), 1277 - 1294.
  • 2Reinhard Diestel. Graph Theory[ M ]. 4th ed. German : springer - ver- lag, 2010:451-471.
  • 3吴永芳,杨鑫,徐敏,张星.基于K均值聚类的图割医学图像分割算法[J].计算机工程,2011,37(5):232-234. 被引量:16
  • 4Camille Couprie, Leo grady. Power Watersheds : A New Image Segmen- tation Framework Extending Graph Cuts, Random Walker and Optimal Spanning Forest [ C ]//Proceedings of the 12^th International Conference on Computer Vision(ICCV). Kyoyo: IEEE Inc,2009:731 -738.
  • 5Chen M, Liu M, Liu J. Isoperimetrie Cut on A Directed Graph[C]// Proceedings of 2010 Computer Vision and Pattern Recognition (CVPR). San Francisco: IEEE Inc, 2010:2109-2116.
  • 6Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 888 - 905.
  • 7Grady L, Schwartz E L. Isoperimetric Graph Partitioning for Image Segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3 ): 469-475.
  • 8Watts D J. Small worlds:The dynamics of networks between order and randomness[ M]. Princeton studies in complexity. Princeton Universi- ty Press, Princeton,N. J,2003.
  • 9Chen Weita, Liu Weichuan, Chen Mingsyan. Adaptive Color Featutre Extraction Based on Image Color Distributions[ J]. IEEE Transactions on Image Processing, 2010,19( 8 ) :2005 -2016.
  • 10Ning Jifeng, Zhang Lei, David Zhang. Robust object Tracking Using Joint Color-Texture Histogram [ J ]. Pattern Recognition and Artificial Intelligence, 2009,23 ( 7 ) : 1245 - 1263.

二级参考文献8

  • 1Scherrer B, Forbes F, Garbay C, et al. Distributed Local MRF Models for Tissue and Structure Brain Segmentation[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1278-1295.
  • 2Kolmogorov V, Zabih R. What Energy Functions Can be Minimized Via Graph Cuts?[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159.
  • 3Peng B, Vcksler O. Parameter Selection for Graph Cut Based on Image Segmentation[C]//Proc. of British Machine Vision Conference. Leeds, UK: [s. n.], 2008.
  • 4Rother C, Blake A, Kolmogorov V. Grabcut-lnteractive Foreground Extraction Using Iterated Graph Cuts[J]. Transactions on Graphics, 2004, 23(3): 309-314.
  • 5Boykov Y, Jolly M. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images[C]//Proc. of International Conference on Computer Vision. Vancouver, Canada: [s. n.], 2001.
  • 6MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]//Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California Press, 1967.
  • 7Greenspan H, Ruf A, Goldberger J. Constrained Gausslan Mixture Model Framework for Automatic Segmentation of MR Brain Images[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1233-1245.
  • 8蒋世忠,易法令,汤浪平,涂泳秋.基于图割的MRI脑部图像肿瘤提取方法[J].计算机工程,2010,36(7):217-219. 被引量:11

共引文献15

同被引文献39

  • 1Stanton I,Kliot G.Streaming Graph Partitioning for Large Distributed Graphs[C]//Proceedings of the 18th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.New York,USA:ACM Press,2012:1222-1230.
  • 2Bansal N,Feige U,Krauthgamer R,et al.Min-max Graph Partitioning and Small Set Expansion[J].SIAM Journal on Computing,2014,43(2):872-904.
  • 3Nishimura J,Ugander J.Restreaming Graph Partitioning:Simple Versatile Algorithms for Advanced Balancing[C]//Proceeding s of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Chicago,USA:ACM Press,2013:1106-1114.
  • 4López-Ruiz R,Sanudo J,Romera E,et al.Statistical Complexity and Fisher-shannon Information:Applications[M].Berlin,Germany:Springer,2011.
  • 5Silva T C,Zhao L.Stochastic Competitive Learning in Complex Netw orks[J].IEEE Transactions on Neural Netw orks and Learning Systems,2012,23(3):385-398.
  • 6Chakrabarti D,Papadimitriou S,Modha D S,et al.Fully Automatic Cross-associations[C]//Proceedings of the10th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.New York,USA:ACM Press,2012:79-88.
  • 7Chakrabarti D.Autopart:Parameter-free Graph Partitioning and Outlier Detection[C]//Proceedings of PKDD’04.Berlin,Germany:Springer,2004:112-124.
  • 8Sun J,Faloutsos C,Papadimitriou S,et al.Graphscope:Param eter-free Mining of Large Tim e-evolving Graphs[C]//Proceedings of the 13th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.San Jose,USA:ACM Press,2007:687-696.
  • 9Yamanishi K,Maruyama Y.Dynamic Model Selection with Its Applications to Novelty Detection[J].IEEE Transactions on Information Theory,2013,53(6):2180-2189.
  • 10Rissanen J.Fisher Information and Stochastic Complexity[J].IEEE Transactions on Information Theory,2012,42(1):40-47.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部