摘要
逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合X珔F与外逆P-集合X珔F珔构成的集合对;或者,(X珔F,X珔F珔)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的一个动态推理,它是由内逆P-推理与外逆P-推理共同构成的。利用逆P-集合和逆P-推理,给出逆P-等价类、内逆P-等价类和外逆P-等价类概念,逆P-等价类与普通等价类的关系,逆P-等价类的逆P-推理分离-还原与分离-还原定理。在静态-动态条件下,普通等价类是逆P-等价类的特例,逆P-等价类是普通等价类的一般形式。
Abstract:Through improving an ordinary finite cantor set X inverse packet set is introduced by bringing dynamatic fea- ture into X. Inverse packet set consists of an internal inverse packet set Xr and an outer inverse packet set Xj which is denoted briefly by a set pair (XF ,XF). It can be reduced to an ordinary set in some situations. Inverse P-reasoning is a dynamatic reasoning generated by inverse packet sets which is composed of internal inverse packet reasoning and outer inverse packet reasoning together. Utilizing inverse packet sets and inverse packet reasoning, one defines severval im- portant concepts such as inverse packet equivalence class, internal inverse packet equivalence class and outer inverse packet equivalence class and on the other hand, one obtains a relationship between inverse packet equivalence class and ordinary equivalence calss. Finally, one achieves seperation and reduction on inverse packets equivalence class and sep- aration-reduction theorem as well. Under static-dynamatic conditions, ordinary equivalence class is a special case of in- verse packet equivalence class and inverse packet equivalence class is a general form of the ordinary one.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2013年第1期62-67,共6页
Journal of Shandong University(Natural Science)
基金
河南省基础与前沿技术研究项目(112300410056)资助
山东省自然科学基金资助项目(ZR2010AL019)
关键词
逆P-集合
逆P-等价类
逆P-推理
推理分离
分离-还原定理
inverse packet sets
inverse packet equivalence class
inverse packet reasoning
reasoning separation
separation-reduction theorem