期刊文献+

广义线性互补问题的极大熵牛顿算法

MAXIMUM ENTROPY NEWTON ALGORITHM FOR GENERALIZED LINEAR COMPLEMENTARITY PROBLEM
下载PDF
导出
摘要 借助一类特殊的绝对值方程,将广义线性互补问题等价转化为非线性方程组。基于极大熵函数,提出了一个牛顿算法,证明了算法的局部收敛性。数值结果也验证了算法的有效性。 The generalized linear complementarity problem is converted to nonlinear equations by a specialized case of absolute value equations. Based on the maximum entropy function, the Newton method is established and the convergence of maximum entropy Newton method is studied. Numerical results imply that the algorithm is effective.
作者 王爱祥
出处 《井冈山大学学报(自然科学版)》 2013年第2期25-27,共3页 Journal of Jinggangshan University (Natural Science)
关键词 广义线性互补问题 绝对值方程 极大熵 牛顿算法 generalized linear complementarity problem absolute value equations maximum entropy Newtonmethod
  • 相关文献

参考文献6

二级参考文献11

  • 1李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 2Fiedler M Pták V.Some Genaralization of Positive Definiteness and Monotonicity[J].Numer. Math.,1966,(9):163-172.
  • 3ROHN J. Systems of linear interval equations[ J]. Linear Algebra and its Application, 1989, 126:39 -78.
  • 4ROHN J. A theorem of the alternatives for the equation Ax + B [x] = b [ J ]. Linear and Muhilinear Algebra, .2004, 52 (6) : 421 - 426.
  • 5MANGASARIAN O L. Absolute value programming[ J]. Computational Optimization and Applications, 2007, 36(I ): 43-53.
  • 6ROHN J. On unique solvability of the absolute value equation[J]. Optimization Letters, 2009, 3 (4) : 603 - 606.
  • 7HU S L, HUANG Z H, ZHANG Q. A generalized Newton method for absolute value equations associated with second order cones [ J]. Computational Optimization and Applications, 2011, 235 : 1490 - 1501.
  • 8MANGASARIAN O L, MEYER R R. Absolute value equations [ J ]. Linear Mgebra and Its Application, 2006, 419(2/3) : 359 -367.
  • 9MANGASARIAN 0 L. A generalized Newton method for absolute value equations[J], Optimization Letters, 2009, 3( 1 ) : 101 - 108.
  • 10王爱祥,王海军.绝对值方程的区间算法[J].贵州大学学报(自然科学版),2010,27(2):7-10. 被引量:15

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部