摘要
设p≡5(mod 6)为素数.证明了丢番图方程x3-y6=3pz2在p≡5(mod 12)为素数时均无正整数解;在p≡11(mod 12)为素数时均有无穷多组正整数解,并且还获得了该方程全部正整数解的通解公式,同时还给出了该方程的部分整数解.
In this paper, we study the integer solutions of the diophantine equation χ^3一У^6=3pz^2, where p=5 ( rood 6) is some prime number. We prove that the equation has no positive integer solution if p=5(mod 12), and the equation has infinitely many positive integer solutions if p=11 (mod 12). For the second case, the general formula of the positive integer solutions and parts of the solutions are given.
出处
《数学理论与应用》
2013年第1期104-109,共6页
Mathematical Theory and Applications
关键词
丢番图方程
正整数解
广义FERMAT猜想
Diophantine Equation Positive Integer Solution Generalized Fermat Conjecture