期刊文献+

基于EKF和Lyapunov函数的移动机器人轨迹跟踪控制(英文) 被引量:1

The Mobile Robot Trajectory Tracking Control Based on the EKF and the Lyapunov Function
下载PDF
导出
摘要 针对轮式移动机器人在实际运行中受环境因数影响的情况,采用扩展卡尔曼滤波(EKF)算法融合里程计与超声波的观测数据,对机器人的参考轨迹信息进行校正。在机器人动力学模型的基础上,运用Lyapunov直接法,构造具有全局渐近稳定的跟踪控制器,对机器人进行轨迹跟踪。根据Lyapunov稳定性定理证明了系统的全局稳定性。仿真结果表明,数据滤波与Lyapunov方法结合的跟踪控制器效果良好。 According to the fact that the wheeled mobile robots are influenced by the environmen- tal factor in practice, the information of reference trajectory of the robot was corrected by using the extended Kalman filter (EKF) algorithm fusion odometry and ultrasonic observation data. Based on the robot dynamic model, a global asymptotical stable tracking controller was construc- ted by using the Lyapunov direct method, and the global stability of the system was proved by u- sing Lyapunov stability theorem. The simulation results of this paper showed that the tracking controller, which combined both the data filtering and Lyapunov method, has better efficiency.
作者 王静 蒋刚
出处 《机床与液压》 北大核心 2013年第6期69-73,共5页 Machine Tool & Hydraulics
基金 Postgraduate Innovation Fund sponsored by Southwest University of Science and Technology ( 12ycjj37 ) National Natural Science Foundation of China China Academy of Engineering Physics Mutual Funds Under Grant ( NSAF: 11176027)
关键词 轮式移动机器人 扩展卡尔曼滤波 LYAPUNOV方法 轨迹跟踪 wheeled mobile robot, extended kalman filtering, Lyapunov method, trajectory track-ing
  • 相关文献

参考文献15

  • 1WANG Yanqing, YE Yanhui, GAO Yanfeng . A stable tracking control method for an Autonomous Welding Mo- bile Robot [ J]. Applied Mechanics and Materials, 2011 (79) :264 -269.
  • 2Divya Aneesh. Tracking Controller of Mobile Robot [C]//2012 International Conference on Computing, E- lectronics and Electrical Technologies [ ICCEET ] . Tamil Nadu, India: [ s. n. ] ,2012:343 - 349.
  • 3吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331. 被引量:102
  • 4Bolognani S ,Tubiana L,Zigliotto M. Extended kalman fil- ter tuning in sensorless PMSM drives [ J ]. IEEE Trans. on Industry Applications ( S0093 - 9994 ), 2003,39 ( 6 ) : 1741 - 1747.
  • 5Greg Welch, Gary Bishop. An introduction to the Kalman filter [EB/OL]. [2001 - 09 - 21 ] . http://info, acm. org/pubs/toc/CRnotice, html,.
  • 6WEI Guo, WANG Xin, SUN Jinwei. Method for ultrasonic time-of-flight estimation based on extended Kalman filter [J]. Journal of Jilin University (Engineering and Tech- nology Edition) ,2011,41 (3) :832 - 837.
  • 7申文斌,裴海龙.基于支持向量回归机的扩展卡尔曼滤波[J].计算机仿真,2011,28(4):156-159. 被引量:3
  • 8Kazem Dastgerdi, Hadi Bidokhti, Assef Zare. Adaptive Sliding Mode Control of Nonlinear Gyro Chaotic Vibration [ C]//2012 IEEE Students' Conference on Electrical,E- lectronics and Computer Science. Bhopal: [ s. n. ] ,2012: 1-4.
  • 9PAN Yaodong. Variable structure control by switching a- mong Feedback Control Laws [ C ]//45th IEEE Confer- ence on Decision&Control. San Diego ,CA: [ s. n. ] ,2006 : 789 - 794.
  • 10Farzad P, Mattias P K. Adaptive control of dynamic mo- bile robots with nonholonomic constrains [ J ]. Computers and Electrical Engineering,2002(28):241 -253.

二级参考文献9

  • 1Sarkar N,Int J Robotics Res,1994年,3卷,1期,55页
  • 2曾绍华.支持向量回归机算法理论研究与应用[D]重庆大学,重庆大学2006.
  • 3Reza Olfati-Saber,Dartmouth College.Distributed Kalman Filterwith Embedded Consensus Filters. Proceedings of the 44thIEEE Conference on Decision and Control,and the European Con-trol Conference 2005 . 2005
  • 4P Wang,Y C Huang.Support Vector Regression Model of Curren-cy Options Pricing with Stochastic Volatility Models and ForwardExchange Rate. IEEE/2009 Fifth International Joint Confer-ence on INC,IMS and IDC . 2009
  • 5P Chittari,N R S Raghavan.Support Vector based Demand Fore-casting for Semiconductor Manufacturing. Proceedings IEEEInternational Symposium on Semiconductor Manufacturing . 2006
  • 6S Ronnback.Development of a INS/GPS Navigation Loop for anUAV. . 2000
  • 7Gunn S.Support Vector Machines for Classification and Regression. Technical Report ISIS-1-98 . 1998
  • 8Seung-Min Oh,Eric No Johnoson.Development of UAV Navigation System Based on Unscented Kalman Filter. Guidance,Navigation,And Control Conference . 2006
  • 9王新屏,张显库,张丽坤.H_∞滤波与Kalman滤波的对比研究[J].自动化与仪器仪表,2003(1):9-11. 被引量:5

共引文献102

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部