期刊文献+

鲁棒可区分的压缩视频感知哈希算法研究 被引量:3

Robust and discriminative perceptual hash algorithm in compressed video
下载PDF
导出
摘要 运用比较宏块互异数方法得到视频关键帧,提出基于Gabor小波分解的视频感知特征快速提取算法,针对小波分解后得到的特征矩阵,给出基于负熵目标函数的FastICA优化降维量化策略,并运用中位值量化方法得到哈希位串.采用标准格式视频验证的结果显示,该算法对亮度变化、噪音污染等常规内容操作具有良好的鲁棒性能,对感知内容不同的视频序列也有较好的区分性能.研究成果可为视频版权、视频安全和视频篡改检测提供理论支撑和技术支持. The method of comparing the different number of macro-block to get the video key frame was applied and a fast video perception features extraction algorithm based on Gabor wavelet decomposition was proposed in this paper. On account of the feature matrix resulting from wavelet decomposition, we propound the quantitative policy FastlCA, baoed on the objective function of negative entropy, to optimize dimension reduction. At last, we get the Hash bunch from the method of the medium value quantization. According the standard format video vali- dation, we can conclude that the algorithm have a good Robust performance on the normal operation of the chan- ges of lightness, noise pollution, etc. It also has a good distinguishable performance on perceiving the list in vide- os that have different contents. The restrlt of the research can provide technical support in the area of video copy- right, video security, tamper detection of video, etc.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2013年第2期157-161,共5页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(61170326) 深圳市科技基础研究基金资助项目(JC201005250052A)~~
关键词 视频处理 感知哈希 小波分析 独立分量分析量化 视频压缩 视频版权 视频安全 视觉感知 视频篡改检测与定位 video processing perception hash wavelet analysis independent component analysis quantization video compression video copyright video security visual perception video tamper detection and location
  • 相关文献

参考文献13

  • 1牛夏牧,焦玉华.感知哈希综述[J].电子学报,2008,36(7):1405-1411. 被引量:98
  • 2Mucedero A, Lancini R, Mapelli F. A novel hashing al- gorithm for video sequences [ C ]// Proceedings of the 2004 International Conference on Image Processing. Sin- gapore: IEEE Press, 2004, 4: 2239-2242.
  • 3De Roover C, De Vleeschouwer C, Lefebvre F, et al. Robust video hashing based on radial projections of key frames [ J ]. IEEE Transactions on Signal Processing, 2005, 53(10): 4020-4037.
  • 4Coskun B, Sankur B, Memon N. Spatio-temporal trans- form based video hashing [ J ]. IEEE Transactions on Multimedia, 2006, 8(6): 1190-1208.
  • 5Coskun B, Sankur B. Robust video hash extraction [C]// Proceedings of the 12th IEEE Signal Processing and Communications Applications Conference. Kusadasi (Turkey) : IEEE Press, 2004 : 2295-2298.
  • 6Zhou Xuebing, Schmucker M, Brown C. Perceptual has- hing of video content based on differential block similarity [ C ] // 2005 International Conference on Computational Intelligence and Security. Xi'an ( China ) : IEEE Press, 2005, 3802: 80-85.
  • 7Oostveen J C, Kalker T, Haitsma J. Visual hashing of digital video: applications and techniques [ C ] // Pro- ceedings of SPIE: Applications of Digital Image Processing XXIV. San Diego(USA) : SPIE Press, 2001, 4472: 121-131.
  • 8张慧,张海滨,李琼,牛夏牧.基于人类视觉系统的图像感知哈希算法[J].电子学报,2008,36(B12):30-34. 被引量:26
  • 9Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection [ C ]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco (USA) : IEEE Press, 2010: 1030-1037.
  • 10Ying Long, Xu Changsheng, Guo Wen. extended MHT al- gorithm for multiple object tracking [ C ]// ICIMCS '12 Proceedings of the 4th International Conference on Internet Multimedia Computing and Service. New York: ACM, 2012: 75-79.

二级参考文献37

  • 1J Fridrich, M Goljan. Robust hash functions for digital water- marking[ A]. Proceedings. International Conference on Information Technology: Coding and Computing [ C]. Las Vegas:IEEE,2000. 178 - 183.
  • 2V Monga, B L Evans. Robust perceptual image hashing using feature points [ A ]. Proceedings of IEEE International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE, 2004. 1 : 677 - 680.
  • 3S S Kozat, R Venkatesan, M K Mihcak. Robust perceptual image hashing via matrix invariants [ A ]. Proceedings of International Conference on Image Processing (ICIP) [ C ]. Singapore: IEEE,, 2004.5 : 3443 - 3446.
  • 4R Venkatesan, S M Koon, et al. Robust image hashing. Proceedings of IEEE International Conference of Image Processing (ICIP) [ C ]. Vancouver: IEEE, 2000.3 : 664 - 666.
  • 5A De Angelis,A Moschitta,F Russo,P Carbone. Image quality assessment: an overview and some metrological considerations [ A]. International Workshop on Advanced Methods for Uncertainty Estimation in Measurement[ C ]. Trento: IEEE, 2007.47 - 52.
  • 6H R Sheikh, A C Bovik. Image information and visual quality [ J ]. IEEE Transactions on Image Processing, 2006,15 (2) : 430 -444.
  • 7Andrew B Watson. DCT quantization matrices visually optimized for individual images[A]. The Intemational Society for Optical Engineering [C]. California: SPIE, 1993.1913 : 202 - 216.
  • 8Wang Zhou, A C Bovik, H R Sheikh, et al. Image quality assessment: from error visibility to structural similarity [ J ]. IEEE. Transactions on Image Processing,2004,13(4) :600- 612.
  • 9Allan G Weber. The USC-SIPI Image Database: Version 5 [ DB/OL]. http://sipi, usc. edu/database.
  • 10王甦 汪安圣.认知心理学[M].北京:北京大学出版社,1992..

共引文献114

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部