期刊文献+

316L不锈钢在循环水中点蚀的氯离子浓度阈值研究 被引量:3

Study on Critical Chlorine Ion Concentration for Pitting Corrosion of 316L Stainless Steel in Cooling Water
下载PDF
导出
摘要 采用电化学法研究了316L不锈钢在循环水中的点蚀电位(Eb)、蚀孔深度和数目与Cl-质量浓度的关系。结果表明,常温下316L不锈钢的Eb总是随着Cl-质量浓度的增大而减小,当Cl-质量浓度小于900 mg/L时,增大Cl-质量浓度易导致点蚀敏感,而大于该值时增大Cl-质量浓度不会明显增大点蚀倾向;从蚀孔深度和表面蚀孔数目可以看出,随着Cl-质量浓度升高,最大蚀孔深度增大,当Cl-质量浓度较大时这种增大变缓慢;316L不锈钢在Cl-质量浓度小于1 150 mg/L时点蚀倾向对Cl-质量浓度敏感,在Cl-质量浓度大于1 150 mg/L时点蚀倾向对Cl-质量浓度不敏感,其点蚀倾向由大变小的Cl-质量浓度阈值为1 150 mg/L。 The relationship of electric potential (Eb ) , pitting depth and number of pitting corrosion of 316L stainless steel in cooling water with C1 is studied by electrochemistry. The results show that the pitting corrosion electric potential ( Eb ) goes down with the increasing chloride ion concentration in ambient temperature. When Cl- concentration is lower than 900 mg/L,further increasing the C1- concentration will concentration is higher than 900 rag/L, further increase the sensitivity of pitting corrosion. When C1- increasing the C1- concentration has no greater impact on pitting corrosion tendency. As seen from depths and number of corrosion pits, The depth of the largest corrosion pits becomes greater with rising C1- concentration, and when the C1- concentration is at the high level, the increase of depth of corrosion pits will slow down. The pitting corrosion of 316L stainless steel is very sensitive to C1 - ions at a concentration of 〈 1150mg/L and is not sensitive to C1 - ions at a concentration of 〉 ll50mg/L. The critical C1- concentration obtained by depth and number of pits is 1150 mg/L.
出处 《石油化工腐蚀与防护》 CAS 2013年第1期8-10,15,共4页 Corrosion & Protection In Petrochemical Industry
关键词 循环水 316L不锈钢 点蚀 氯离子浓度阈值 cooling water 316L stainless steel pitting corrosion critical chlorine ion concentration
  • 相关文献

参考文献5

二级参考文献50

共引文献232

同被引文献31

  • 1何平.螺纹锁紧环换热器与隔膜密封换热器的结构分析[J].石油化工设备技术,2009,30(6):19-23. 被引量:13
  • 2曹占锋,乔利杰,褚武扬,张继枚,齐新.321不锈钢点蚀电位影响因素的研究[J].中国腐蚀与防护学报,2006,26(1):22-25. 被引量:12
  • 3刘鹤霞,张高林,赵景茂,刘东雨.四种钢材在含CO_2盐水溶液中的腐蚀行为[J].腐蚀与防护,2007,28(4):202-204. 被引量:7
  • 4Ortega J I,Burgaleta J I,Tellez F M. Central Receiver Sys- tem Solar Power Plant Using Molten Salt as Heat Transfer Fluid [J].Jnurnal of Solar Energy Engineering, 2008, 130(2): 1-6.
  • 5Rodriguez M R,Sanchez A ,Mamgan C,el al. New Designs of Molten-Salt Tubular-Receiver for Solar Power Tower [J]. Energy Procedia ,2014,49:504-513.
  • 6Chang Zheshao, Li Xin,Xu Chao,et al. Numerical Simula- tion on the Thermal Performance of a Solar Molten Salt Cavity Receiver [J]. Renewable Energy,2014,69 (9): 324-335.
  • 7Zhang Q Q, Li X, Chang C. An Experimental Study: Thermal Performance of Molten Salt Cavity Receivers [J]. Applied Thermal Energy ,2013,50(1):334-341.
  • 8Zhang Q Q,Li X,Wang Z F. Experimental and Theorelical Analysis of a Dyna,nic Test Method for Molten Salt Cavity Receiver [J]. Renewable Energy, 2013,50(2):214-221.
  • 9Knlizenga A,Gill D. Corrosion of Iron Stainless Sleels in Molten Nitrate Salt [J]. Energy Procedia, 2014,49 : 878-887.
  • 10Goods S H, Bradshaw R W. Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts [J]. Jmepeg ,2004,13(2):78-87.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部