期刊文献+

双目立体视觉测量中的特征点快速匹配算法 被引量:1

Fast image feature point matching algorithm on binocular stereo vision of distance measurement
下载PDF
导出
摘要 对于图像特征点的提取与匹配是双目立体视觉测量系统中的重要一步,提出了一种改进的适用于随机噪声、光照变化、局部遮挡等复杂环境下的快速鲁棒性不变特征(SURF)的匹配算法。首先,改进了特征点描述子中的主方向的计算方法,提高了主方向的精确度和计算效率;其次,结合NN/SN算法和RANDSAC算法,提出特征点的反向匹配算法,克服了外部环境光照变化、噪声、局部遮挡等因素对特征点匹配的影响,有效地提高了匹配精度。 For image feature points extraction and matching is an important step of binocular stereo vision measurement system, and this paper proposes an improved algorithm of speeded robustness invariant features (SURF) matching which is applicable to random noise, illumination change, local keep out the complex environment. First of all, it improves the feature points in the descriptor the calculation method of the main direction, the principal direction accuracy and computational efficiency; Secondly, combined with NN/SN algorithm and RANDSAC algorithm, it puts forward the reverse feature point matching algorithm, which overcomes the external environment illumination change, noise, local shelter and ete factors on the influence of the feature point matching, effectively improves the precision of matching.
出处 《信息技术》 2013年第3期51-56,59,共7页 Information Technology
基金 国家自然科学基金资助项目(03SQ05)
关键词 特征匹配 双目立体视觉 SURF 反向匹配 NN SN feature matching binocular stereo vision SURF reverse matching NN/SN
  • 相关文献

参考文献11

二级参考文献69

共引文献269

同被引文献9

  • 1GHAFFARY B K, SAWCHUK A A. A survey of new techniques for im- age registration and mapping[ C ]//Prec. the SPIE: Application of Digital image Processing. [ S. 1. ] : IEEE Press, 1983:222-239.
  • 2BAY H, TUYTEPLAARS T, VAN G L. SURF: speeded up robust fea- tures [ C ]//Prec. the European Conference on Computer Version (ECCV 2006). IS. 1. ] :IEEE Press,2006: 404-417.
  • 3LOWED. Distinctive image features from scale-invariant keypoints[ J ]. International Joural of Computer Vision, 2004, 60(2): 91-110.
  • 4ZITOVA B, FLUSSER J. Image registration methods :a survey [ J ]. lm- age and Vision Computing, 2003, 21 ( 11 ) : 977-1000.
  • 5FONSECA L M G, MANJUNATH B S. Registration techniques for mul- tisensor remotely sensed imagery [J]. Photogrammetrlc Engineering and Remote .Sensing, 1996,62(1 ): 1049-1056.
  • 6李慧,蔺启忠,刘庆杰.基于FAST和SURF的遥感图像自动配准方法[J].国土资源遥感,2012,24(2):28-33. 被引量:12
  • 7陈艺虾,孙权森,徐焕宇,耿蕾蕾.SURF算法和RANSAC算法相结合的遥感图像匹配方法[J].计算机科学与探索,2012,6(9):822-828. 被引量:50
  • 8张开玉,梁凤梅.基于改进SURF的图像配准关键算法研究[J].科学技术与工程,2013,21(10):2875-2879. 被引量:15
  • 9郭亮,滕奇志.基于SURF算法的微观驱替图像配准[J].太赫兹科学与电子信息学报,2013,11(2):271-276. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部