期刊文献+

基于DM6437的车辆检测与跟踪 被引量:2

Vehicle detection and tracking based on DM6437
下载PDF
导出
摘要 运用单高斯模型及形态学滤波和区域连通等技术,设计并实现了基于DM6437嵌入式系统的视频车辆检测跟踪系统。通过在DM6437平台实际运行表明,该系统能够在视频25帧/S时,实时有效地检测和跟踪车辆,具有较高准确率和稳健性。 This paper focus on the design and implementation of DM6437-based vehicle detection and tracking system with the single Gaussian model, morphological filtering, regional connectivity and so on. The ultimate test shows that the system can detect and track moving vehicles effectively in the 25fps video stream. And the system runs accurately and robustly.
出处 《信息技术》 2013年第3期78-80,共3页 Information Technology
关键词 检测与跟踪 DM6437 单高斯模型 形态学滤波 邻域连通 detection and tracking DM6437 single Gaussian model morphological filtering regionalconnectivity
  • 相关文献

参考文献6

  • 1王圣男,郁梅,蒋刚毅.智能交通系统中基于视频图像处理的车辆检测与跟踪方法综述[J].计算机应用研究,2005,22(9):9-14. 被引量:80
  • 2Texas Instruments Incorporated TMS320DM6437 Digital Media Pro- cessor[ M]. 2007.
  • 3Christopher Richard Wren Real-Time Tracking of the Human Body [ C]. IEEE trans on Pattern Analysis and Machine Intelligence, 1997,19(7) :780 -785.
  • 4Suzuki K, Horiba I, Sugie N. Fast connected-component labeling based on sequential local operations in the course of forward raster scan followed by backward raster scan[ C]//Proc. 15th Int. Conf. Pattern Recognition, Barcelona, Spain, 2000(2) :434 -437.
  • 5CHRISTOPHE B. Initializing EM using the properties of its trajecto- ries in Gaussian mixtures module [ J ]. Statistics and Computing, 2004,14 (3) :267 - 279.
  • 6Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999 (2) :246 - 252.

二级参考文献48

  • 1Yanowitz S, Bruckstein A. A New Method for Image Segmentation[J].Computer Vision Graphics and Image Processing,1989,46(4):82-95.
  • 2Y Park. Shape-resolving Local Thresholding for Object Detection[J]. Pattern Recognition Letters, 2001, 22(5):883-890.
  • 3J M Blosseville, C Krafft, F Lenoir,et al.TITAN:New Traffic Measurements by Image Processing[C].Proc. of IFAC Transportation Systems, 1999,14(1):277-296.
  • 4N Hoose, L G Willumsen. Automatically Extracting Traffic Data from Video-tape Using the CLIP4 Parallel Image Processor[J].Pattern Recognition Letters, 1987,6(3):199-213.
  • 5T Abramczuk. A Microcomputer based TV Detector for Road Traffic[J].In Symposium on Road Research Program,T,1984,3(2):145-147.
  • 6W Kasprzak. An Iconic Classification Scheme for Video-based Traffic Sensor Tasks[C]. W Skarbek. CAIP 2001, Springer, Berlin, 2001.725-732.
  • 7M Fathy, M Y Siyal. An Image Detection Technique Based on Morphological Edge Detection and Background Differencing for Real-time Traffic Analysis[J]. Pattern Recognition Letters, 1995, 16(2):1321-1330.
  • 8B Ross. A Practical Stereo Viasion System[C].Proceedings of International Conference on Computer Vision and Pattern Recognition,1993,3(5):148-153.
  • 9Joon Woong Lee. A Machine Vision System for Lane-Departure Detection[J].Computer Vision and Image Understanding,2002,86(1):52-78.
  • 10M Bertozzi, A Broggi, S Castelluccio. A Real-time Oriented System for Vehicle Detection[J]. Journal of System Architecture, 1997, 43(3):317-325.

共引文献79

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部