期刊文献+

包含无关项逻辑函数的固定极性转换 被引量:3

Fixed-polarity conversions for logic functions include don’t care terms
下载PDF
导出
摘要 通过对Boolean逻辑和RM((Reed-Muller)逻辑的研究,针对Boolean逻辑函数SOP(Sum-of-Products)展开式中无关项取舍不确定的特点,结合快速列表技术,提出一种包含无关项逻辑函数的固定极性转换方法。该方法首先求出最小项和无关项的相关与项,然后生成最小项索引表以及无关项索引表,最后搜索无关项取舍,得到最佳固定极性RM(Fixed-Polarity Reed-Muller,FPRM)展开式。通过对10个MCNC Benchmark电路进行测试,结果表明:与不考虑无关项的极性转换方法相比,该方法能有效简化FPRM展开式。 Based on the research of Boolean logic and RM(Reed-Muller) logic,according to the feature that don’t care terms in SOP(Sum-of-Products) expansions of Boolean logic functions are not specified,in conjunction with the fast tabular technology,a fixed-polarity conversion approach for logic functions which include don’t care terms is proposed.Firstly,the relational AND terms of mini-terms and don’t care terms are deduced.Secondly,the mini-terms index table and don’t care terms index table is generated.Finally,the best allocation of don’t care terms is searched so as to get the best FPRM(Fixed-Polarity Reed-Muller) expansions.The results of experiments test on 10 MCNC Benchmark circuits show that: compared with the polarity conversion approach ignoring don’t care terms,the proposed approach can simplify the FPRM expansions.
出处 《电路与系统学报》 北大核心 2013年第1期117-121,共5页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(61076032) 浙江省科技厅项目(2011R09021-04 2010C31012) 浙江省教育厅项目(Y201016317) 宁波大学学科项目(XKL089)
关键词 Reed—Muller 逻辑综合 固定极性转换 无关项 reed-muller logic synthesis fixed-polarity conversions don't care terms
  • 相关文献

参考文献10

  • 1ZHANG Huihong,WANG Pengjun,GU Xingsheng.Area Optimization of Fixed-Polarity Reed-Muller Circuits Based on Niche Genetic Algorithm[J].Chinese Journal of Electronics,2011,20(1):27-30. 被引量:9
  • 2H Rahaman, D K Das, B B Bhattacharya. Testable design of AND-EXOR logic networks with universal test sets [J]. Computers and Electrical Engineering, 2009, 35(5): 644-658.
  • 3M Yang, H Xu, A E A Almaini. Optimization of mixed polarity reed-muller functions using genetic algorithm [A]. in: the 3rd International Conference on Computer Research and Development [C]. Shanghai, 2011, 293-296.
  • 4J Dai, H Zhang. A novel quantum genetic algorithm for area optimization of FPRM circuits [A]. in: the 3rd International Symposium on Intelligent Information Technology Application [C]. NanChang, 2009, 408-411.
  • 5W Wu, P Wang, X Zhang, et al. Search for the best polarity of fixed polarity reed muller expression base on QGA [A]. in: 2008 IEEE 8th International Conference on Communication Technology Proceedings [C]. Hangzhou, 2008, 343-346.
  • 6Wang Pengjun,Chen Xiexiong.TABULAR TECHNIQUES FOR OR-COINCIDENCE LOGIC[J].Journal of Electronics(China),2006,23(2):269-273. 被引量:12
  • 7B A AI Jassani, N Urquhart, A E A Almaini. Manipulation and optimisation techniques for Boolean logic [J]. IET Computers and Digital Techniques, 2010, 4(3): 227-239.
  • 8B AI Jassani, N Urquhart, A Almaini. Minimization of incompletely specified mixed polarity reed muller functions using Genetic Algorithm [A]. in: 2009 3rd International Conference on Signals, Circuits and Systems [C]. Tunis, 2009, 1-6.
  • 9L McKenzie, A E A Almaini, J F Miller, et al. Optimization of Reed-Muller logic functions [J]. International Journal of Electronics, 1993, 75(3): 451-466.
  • 10E C Tan, H Yang. Fast tabular technique for fixed-polarity Reed-Muller logic with inherent parallel processes [J]. International Journal of Electronics, 1998, 85(4): 511-520.

共引文献19

同被引文献26

  • 1Yang Meng,A.E.A. Almaini,Wang Pengjun.FPGA PLACEMENT OPTIMIZATION BY TWO-STEP UNIFIED GENETIC ALGORITHM AND SIMULATED ANNEALING ALGORITHM[J].Journal of Electronics(China),2006,23(4):632-636. 被引量:6
  • 2Almaini A E A, Thomson P, and Hanson D. Tabular techniques for Reed-Muller logic[J]. International Journal of Electronics Theoretical and Experimental,1991, 70(1): 23-34.
  • 3Lozano C C, Falkowski B J, and Luba T. Fixed polarity linearly independent expansions for the representation of quaternary functions[J]. Multiple-Valued Logic and Soft Computing, 2012, 19(4): 307-324.
  • 4Castro J. Recent advances in optimization techniques for statistical tabular data protection[J]. European Journal of Operational Research, 2012, 216(2): 257-269.
  • 5A1 Jassani B A, Urquhart N, and Almaini A E A. Manipulation and optimisation techniques for Boolean logic [J]. IET Computers & Digital Techniques, 2010, 4(3): 227-239.
  • 6Wang Lingli and Almani A E A. Faust conversion algorithm for very large Boolean functions[J]. Electronics Letters, 2000, 36(16): 1370-1371.
  • 7Wang Xiang, Lu Ying, Zhang Yi, et al.. Probabilistic modeling during power estimation for mixed polarity Reed- Muller logic circuits[C]. IEEE International Conference on Green Computing and Communications, Beijing, China, 2013: 1414-1418.
  • 8Bernasconi A, Ciriani V, Drechsler R, et al.. Logic minimization and testability of 2-SPP networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(7): 1190-1202.
  • 9Ciriani V. Synthesis of SPP three-level logic networks using affine spaces[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(10): 1310-1323.
  • 10Amaru L, Gaillardon P, and De Micheli G. MixSyn: an efficient logic synthesis methodology for mixed XOR- AND/OR dominated circuits[C]. 18th Asia and South Pacific Conference on Design Automation, Yokohama, Japan, 2013: 133-138.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部