期刊文献+

基于LPFT时频滤波器的WVD交叉项抑制方法 被引量:2

WVD cross term suppression using the LPFT-based time-frequency filtering
下载PDF
导出
摘要 本文提出一种抑制Wigner-Ville分布(WVD)交叉项的新方法。利用局部多项式傅里叶变换(LPFT)构建时频滤波器,确定自项支撑区域,再利用此滤波器对WVD进行处理,从而达到抑制交叉项的目的。通过3dB信噪比的分析可以看出,LPFT具有比短时傅里叶变换(STFT)更好的时频聚集性,因此基于LPFT的时频滤波器能更有效抑制WVD中的交叉项干扰,同时又能保留WVD的高时频聚集性。通过与Chio-Williams分布、径向高斯核函数时频分布、基于STFT时频滤波器的交叉项抑制方法的比较,验证了该方法对抑制多分量信号及非线性调频信号的交叉项以及噪声干扰的有效性,显示了该方法在保持高时频聚集性,抑制交叉项干扰,以及抑制噪声干扰方面的优势。 In this paper,a new method is proposed to suppress the cross terms in the WVD.First,the time-frequency filtering based on the local polynomial Fourier transform(LPFT) is constructed,then the filtering is used to determine the auto term region and suppress cross terms in the WVD.As shown in the 3dB SNR analysis,the LPFT can provide better resolution than the STFT,therefore,the LPFT-based time-frequency filtering can effectively suppress cross terms in the WVD,as well as maintain the high resolution characteristic of the WVD.Compared with the Chio-Williams distribution,the radially Gaussian kernel time-frequency representation,and the WVD cross term suppression method using the STFT-based filtering,the proposed method proves its advantages in cross term suppression,as well as in noise suppression,for multicomponent or nonlinear FM signals.
出处 《电路与系统学报》 北大核心 2013年第1期122-126,共5页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(61102164) 浙江省自然科学基金资助项目(Y1110632)
关键词 Wigner—Ville分布(WVD) 交叉项 局部多项式傅里叶变换(LPFT) 时频滤波器 Wigner-Ville distribution (WVD) cross terms local polynomial Fourier transform (LPFT) time-frequencyfiltering
  • 相关文献

参考文献3

二级参考文献32

  • 1陈洁,沈远彤.基于小波包变换的威格纳分布交叉项的抑制[J].湖北大学学报(自然科学版),2006,28(1):4-6. 被引量:4
  • 2李雨青,水鹏朗,林英.基于多谱图叠加阈值的抑制WVD交叉项的新方法[J].电子与信息学报,2006,28(8):1435-1438. 被引量:15
  • 3Jeong J, Williams W J. Mechanism of the cross-terms in spectrogram [J]. IEEE Trans. Signal Processing, 1992, 40(10) : 2608 - 2613.
  • 4Kwok H K, Jones D L. Improved instantaneous frequency esti mation using an adaptive short-time Fourier transform [J].IEEE Trans. Signal Processing, 2000, 48(10): 2964 -2972.
  • 5Durak L, Arikan O. Short-time Fourier transform: two funda mental properties and an optimal implement-tation[J].IEEE Trans. Signal Processing, 2003, 51(5) : 1231 - 1242.
  • 6Cheung S, Lim J S. Combined multiresolution (wide-band/nar row-band) spectrogram[J].IEEE Trans. Signal Processing, 1992, 40(4) : 975 - 977.
  • 7Loughlin P, Pitton J, Hannaford B. Approximating time-frequency functions via optimal combinations of spectrograms [J].IEEE Trans. Signal Processing Letters, 1994, 1(12) : 199 - 202.
  • 8Gontsias J, Schonfeld D. Morphological representation of discrete and binary images[J].IEEE Trans. Signal Processing, 1991, 39(6) :1369 - 1379.
  • 9Shui P L, Shang H Y, Zhao Y B. Instantaneous frequency estimation based on directionally smoothed pseudo-Wigner-Ville distribution bank[J].IET Radar Sonar Navig. , 2007,1(4) : 317 - 325.
  • 10Choi H I, Williams W J. Improved TF representation of multicomponent signals using exponential kernels[J]. IEEE Trans. Acoust. , Speech, Signal Processing, 1989, 37(6) : 862 - 871.

共引文献21

同被引文献6

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部