摘要
研究周期函数的导函数与原函数的周期性.得到了可导的周期函数的导函数是周期函数;若f(x)是周期为T的连续函数,则f(x)的原函数F(x)是周期为T的函数的充分必要条件是∫T0f(x)d x=0;若f(x)是周期为T的连续函数,则一阶线性微分方程y'+ky=f(x)存在以T为周期的周期解的充分必要条件是,存在常数c,使等式∫0-Tektf(t)d t+c(e-kT-1)=0成立.
The periodicity of the derivative function and the primitive function of a periodic function was studied. The conclusions are as follows. At first, the derivative function of a differential periodic function is a periodic function. Secondly, let f(x) is continuous periodic function with period T, as the primitive function of f(x), F (x) is a periodic function with period T. if and only if ∫0^Tf(x)dx=0. And finally, let f(x) is continuous periodic function with period T, linear first- order differential equation y′+ky=f(x) has a periodic solution with period T, if and only if there is a eonstant c, suehthat ∫-T^0e^ktf(t)dt+c(e^-kT-1)=0.
出处
《淮北师范大学学报(自然科学版)》
CAS
2013年第1期19-21,共3页
Journal of Huaibei Normal University:Natural Sciences
关键词
周期函数
导函数
原函数
一阶线性微分方程
周期解
periodic function
derivative function
primitive function
linear first- order differential equation
periodic solution