期刊文献+

第一类典型域相关联的Radon变换的特征刻画(英文)

The characterization of the Radon transform associated with the classical domain of type one
下载PDF
导出
摘要 设D(Ω,Φ)为第一类典型域DI的无界实现,其ilov边界是二步幂零李群.文章首先介绍了上的调和分析相关内容,其中包括给出了群傅里叶变换及Plancherel公式和Plancherel测度等,然后介绍了上的Radon变换,定义了两个施瓦茨函数的子空间,这两个子空间同时是Semyanistyi-Lizorkin空间,Radon变换在这两个子空间上是双射.同时还证明了这两个子空间是等价的. Let D ( ) be the unbounded realization of the classical domain 79t of type one. In general, its ~ilov boundary 92 is a nilpotent Lie group of step two. In this article we first introduce the harmonic analysis a- bout 92, such as the group Fouriertransform, the Plancherel formula and the Plancherel measure and so on. Then we introduce the Radon transform on 92, and define two subspaces of Schwartz functions Y(92) , which are called the Semyanistyi-Lizorkin type spaces, on which the Radon transform is a bijection. Moreover, we show that these two subspaces are equivalent.
出处 《广州大学学报(自然科学版)》 CAS 2013年第1期1-6,共6页 Journal of Guangzhou University:Natural Science Edition
基金 Supported by the National Natural Science Foundation of China(10971039,11271091)
关键词 RADON变换 第一类典型域 酉表示 二步幂零李群 Radon transform classical domain of type one unitary representation nilpotent Lie group of step two
  • 相关文献

参考文献15

  • 1HELGASON S. The Radon transform[ M]. 2nd ed. Berlin: Birkhauser, 1999.
  • 2HOLSCHNEIDER M. Inverse Radon transforms through inverse wavelet transforms[ J]. Inv Probl, 1991, 7 (6) :853-861.
  • 3RUBIN B. The Calder6n reproducing formula, windowed X-ray transforms, and Radon transforms in Lp- Spaees[ J]. J Four Anal Appl, 1998, 4(2) :175-197.
  • 4RUBIN B. Fractional calculus and wavelet transforms in integral geometry [ J ]. Frac Calc Appl Anal, 1998, 1 ( 2 ) : 193- 219.
  • 5STRICHARTZ R S. Lp harmonic analysis and Radon transforms on the Heisenberg group[ J]. J Funct Anal, 1991, 96(2) : 350-406.
  • 6RUBIN B. The Radon transform on the Heisenberg group and the transversal Radon transform[ J]. J Funct Anal, 2012, 262 ( 1 ) :234-272.
  • 7GELLER D, STEIN E M. Singlular convolution operators on the Heisenberg group[J]. Bull Amer Math Soc, 1982, 6( 1 ) : 99-103.
  • 8GELLER D, STEIN E M. Estimates for singular convolution operators on the Heisenberg group[ J ]. Math Ann, 1984, 267 (1) :1-15.
  • 9NESSIBI M M, TRIMECHE K. An inversion formula of the Radon transform on the Laguerre hypergroup by using generalized wavelets[J]. J Math Anal Appl, 1997, 208 (2) :337-363.
  • 10HE J X. A characterization of inverse Radon transform on the Laguerre hypergroup [ J ]. J Math Anal Appl, 2006, 318 ( 1 ) : 387-395.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部