摘要
基于det-k-decomp算法,通过引入同构的概念和对separator选择空间的进一步限制,提出一类新的超树分解:分割的超树分解,并提出一种具有较小超树宽度的超树分解方法:基于分割的超树分解———sht-k-decomp,该算法能有效提高约束满足问题的求解效率.实验结果表明,sht-k-decomp算法多数情况下效率高于det-k-decomp算法.
Based on det-k-decomp algorithm,along with the noting isomorphic component and reducing the search space for an appropriate separator,the authors presented a new class of hypertree decomposition:separated hypertree decomposition and presented a new tractable hypertree decomposition algorithm——sht-k-decomp,which can improve the efficiency of constrain satisfaction problem solving effectively.The experimental results on most instances show that our method outperforms det-k-decomp.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2013年第2期257-266,共10页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:60873148
60973089
61170314
61272208)
吉林省科技发展计划项目(批准号:20071106)
关键词
人工智能
超树分解
约束满足问题
artificial intelligence
hypertree decomposition
constraint satisfaction problems