期刊文献+

功能梯度双材料复合悬臂梁受集中剪力作用的弹性力学解 被引量:2

Elastic Solutions for a Bilayer Functionally Graded Cantilever Beam under Concentrated Shear Loads
下载PDF
导出
摘要 采用应力函数的方法,求解了功能梯度双材料层合悬臂梁在端部受集中剪力作用下的弹性解.该梁中含有两个功能梯度层,每层的弹性模量均可以沿厚度方向独立变化,对任意的变化梯度均成立,当退化至各向同性材料时,与已有的单层悬臂梁理论解一致.该方法具有一般性,可推广至功能梯度夹芯梁的求解. An elastic solution for a laminated beam composed of two functionally graded layers subjected to the concentrated shear force at the free end is explored. The beam is treated as a plane problem by means of Airy stress function and its modulus of each graded layer varies with the thickness as an arbitrary function respectively. When assuming the elastic compliance parameters to be constant, this solution can degenerate into the classical solution derived by Timoshenko. Furthermore,this method presented here can be extended to the sandwich functionally graded beam.
出处 《兰州交通大学学报》 CAS 2013年第1期20-24,共5页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(41072207)
关键词 应力函数 功能梯度层 悬臂梁 集中剪力 弹性力学解 stress function functionally graded layer cantilever beam concentrated shear force elasticsolution
  • 相关文献

参考文献12

  • 1Hiral T, Chen L. Recent and prospective development of functionally graded materials in JapanJ]. Materials Science Forum, 1999,308-311.2003,60(3) ; 265-274.
  • 2Abrate S. Impact on composite structuresEM]. Cam- bridge UK: Cambridge University Press, 1998. Anderson TPu A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere I-J]. Composite Structures,.
  • 3李永,宋健,张志民.功能梯度材料悬臂梁受复杂载荷作用的分层剪切理论[J].宇航学报,2002,23(4):62-67. 被引量:7
  • 4Sankar B V. An elasticity solution for functionally gra- ded beams [-J]. Composites Science and Technology, 2001,61(5) .689-696.
  • 5校金友,张铎,白宏伟.用应力函数法求功能梯度梁的弹性理论解[J].强度与环境,2005,32(4):17-21. 被引量:3
  • 6Zhong Z, Yu T Analytical solution of a cantilever func- tionally graded beam[-J-], Composites Science and Tech- nology, 2007,67 : 481-488.
  • 7Venkataraman S, Sankar B V. Elasticity solution for stresses in a sandwich beam with functionally graded core[J, AIAA, 2003,41 (12) : 2501-2505.
  • 8Hsueh C H, Lee S. Modeling of elastic thermal stresses in two materials joined By a graded layer[J-]. Compos- ites: Part B, 2003,34 (8) : 747-752.
  • 9Hsueh C H, Lee S. Modeling of elastic thermal stresses in two materials joined by a graded layer[J]. Compos- ites: Part B, 2003,34 (8) : 747-752.
  • 10Wang M,Liu Y H. Analytical solution for hi-material beam with graded intermediate layer[J]. Composite Structures, 2010,92: 2358-2368.

二级参考文献13

  • 1Suresh S, Mortensen A. Fundamentals of functionally graded materials[M]. London: IOM Communications Ltd, 1998.
  • 2Sankar B V. An elasticity solution for functionally graded beams[J]. Composites Science and Technology, 2001, 61:689-696.
  • 3Venkataraman S, Sankar B V. Elasticitv solution for stress in a sandwich beam with functionally graded core[J]. AIAA Journal, 2003, 41(12): 2501-2505.
  • 4Anderson T A. Three-dimensional elasticity analysis of sandwich composites with functionally graded core[R]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structrual Dynamics, and Material Conference, AIAA 2002-1246, Denver, Colorado.
  • 5Chakraborty A, Gopalakrishnan S, Reddy J N. A new beam finite element for the analysis of functionally graded materials [J]. International Journal of Mechanical Sciences, 2003, 45: 519-539.
  • 6Batra R C, Vel S S. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates[J]. AIAA Joumal, 2002, 40(7): 1421-1433.
  • 7Kashtalyan M. There-dimensional elasticity solution for bending of functionally graded rectangular plates[J]. European Journal of Mechanics A/Solids, in press.
  • 8Timoshenko S P, Goodier J N. Theory of elasticity[M]. 3rd edition, McGraw-Hill, 1970.
  • 9张幸红,赫晓东,韩杰才,曲伟,杜善义.Ni含量对SHS法合成TiC-Ni基金属陶瓷的影响[J].复合材料学报,1999,16(4):24-29. 被引量:19
  • 10李永,张志民,马淑雅.耐热梯度功能材料的热应力研究进展[J].力学进展,2000,30(4):571-580. 被引量:29

共引文献6

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部