期刊文献+

时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则

Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales
下载PDF
导出
摘要 本文讨论一类具有阻尼项的高阶时滞动力方程解的振动性,利用广义Riccati变换和不等式技巧,在一定条件下,建立了新的振动准则,这些准则改进和推广了已知的一些结论. We discussed oscillation criteria for second-order half-linear delay dynamic equation with damping on time scale by using the generalized Riccati transformation and the inquality technique. Under certain conditions ,we established two new oscillation criteria. The results improve and extand some known results.
作者 刘一龙
出处 《邵阳学院学报(自然科学版)》 2013年第1期6-12,共7页 Journal of Shaoyang University:Natural Science Edition
基金 国家自然科学基金(11071066) 湖南省教育厅科研基金资助项目(10C1188)
关键词 时间尺度 动力方程 振动准则 time scale dynamic equation oscillation criterion
  • 相关文献

参考文献16

  • 1Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus [ J]. Results Math, 1990,18 : 18-56.
  • 2Bohner M, Peterson A. Dynamic equations on time scales, an introduction with applications [ M ]. Boston : Birkhauser,2001.
  • 3Agarwal R P, Bohner M, O'Regan D, er al. Dy- namic equations on time scales: a survey [ J] Comput Appl Math ,2002,141 (1-2) : 1-26.
  • 4Sahiner Y. Oscillation of second order delay dif- ferential equations on time scales [ J ]. Nonlin- ear Analysis ,TMA ,2005,63 : e1073-e1080.
  • 5Zhang B G, Deng Xing-hua. Oscillation of delay differential equations on time scales [ J ]. Math Comput Modelling, 2002,36 ( 11 ) : 1037-1318.
  • 6Agarwal R P, Bohner M, Saker S H. Oscillation of second order delay dynamic equations [ J]. Canadian Applied Mathematics Quarterly,2005, 13 (1) :1-18.
  • 7Zhang BG, Zhu Shan-liang. Oscillation of sec- ond order nonlinear delay dynamic equations on time scales [ J ]. Computers Math Applic, 2005, 49 (4) : 599-609.
  • 8韩振来,时宝,孙书荣.时间尺度上二阶时滞动力方程的振动性[J].中山大学学报(自然科学版),2007,46(6):10-13. 被引量:29
  • 9刘振杰.时间测度上一些种群动力学方程的周期解[J].数学的实践与认识,2008,38(7):170-174. 被引量:4
  • 10刘爱莲,朱思铭,吴洪武.二阶时标动力系统的振动准则[J].中山大学学报(自然科学版),2004,43(2):9-12. 被引量:8

二级参考文献106

  • 1刘双,李海龙.用差分方程模型模拟北京2003年SARS疫情[J].生物数学学报,2006,21(1):21-27. 被引量:11
  • 2向丽,龙述君,杨志春.一类非线性时滞微分方程的全局一致渐近稳定性[J].四川大学学报(自然科学版),2007,44(2):236-238. 被引量:5
  • 3Fan M, Agarwal S. Periodic solutions for a class of discrete time competition systems[J]. Nonlinear Stud,2002, 9(3):249-261.
  • 4Li W T, Huo H F. Positive periodic solutions of delay difference equations and applications in population dynamics[J].J Comp Appl Math, 2005,176 : 357-369.
  • 5Huo H F. Periodic solutions for a semi-radio-dependent predator-prey system with functional response[J]. Appl Math Lett, 2005,18 : 313-320.
  • 6Fan M, Kuang Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2004,295: 15-39.
  • 7Gopalsamy K, Kulenovic M R S, Ladas G. Environmental periodicity and time delays in a "food-limited" population model[J]. J Math Anal Appl,1990,147 : 545-555.
  • 8Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. Academic Press, Boston, 1993.
  • 9Gaines R E, Mawhin R M. Coincidence Degree and Nonlinear Differential Equations[M]. Spring Verlag, Berlin, 1977.
  • 10Zhang B G, Gopalsamy K. Global attractivity and oscillation in a periodic delay Logistic equation[J]. J Math Anal Appl, 1990,150: 274-283.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部