期刊文献+

基于快速鲁棒性特征匹配的目标识别 被引量:2

Target Recognition Based on Fast SURF Matching
下载PDF
导出
摘要 针对基于特征匹配的目标识别算法复杂度高、难以实时处理的问题,提出基于快速鲁棒性特征(SURF)的快速特征匹配算法。通过应用双阈值顺序聚类算法对特征点进行聚类,并对每一个聚类建立k-d搜索树,采用优先搜索算法匹配模板与图像的特征点,提高了算法实时性。采用RANSAC鲁棒估计算法消除错误匹配点对,计算模板与图像平面之间的单应矩阵,进而实现对目标的准确识别定位。仿真实验证明了算法的有效性和实用性。 Considering that the target recognition algorithms based on feature matching has high computational complexity and it's hard to be processed in real time, a fast speeded up robust feature (SURF) matching method is proposed. First, the real time image SURF features are extracted, and the two-threshold sequential algorithm scheme is applied for feature point clustering. Then, one k-d search tree is established for each cluster for BBF priority search to match template and image features. Finally, the RANSAC robust estimation algorithm is applied to eliminate the error matching points and estimate the homography of template and the image plane. Experiment demonstrated the validity and practicality of the algorithm.
作者 王涛 唐鸾
出处 《电光与控制》 北大核心 2013年第4期68-71,共4页 Electronics Optics & Control
关键词 目标识别 图像匹配 顺序聚类 优先搜索算法 单应矩阵 target recognition image matching sequential clustering priority search homography
  • 相关文献

参考文献10

  • 1LOWE D G.Object recognition from local scaleinvariant features[C]//International Conference on Computer Vision CorfuGreece1999:1150-1157.
  • 2LOWE D G.Distinctive image features from scaleinvariant keypoints[J].International Journal of Computer Vision 200460(2):91-110.
  • 3BAY HTUYTELAARS TGOOL L V.SURF:Speeded up robust features[C]//Proceedings of the European Conference on Computer Vision2006,3951:404-417.
  • 4BAY HTUYTELAARS TGOOL L V.SURF:SpeededUp Robust Features (SVRF)[J].Computer Vision and Image Understanding2008110(3):346-359.
  • 5THEODORIDS S.模式识别[M].李晶皎,等译.3版.北京:电子工业出版社2006.
  • 6TRAHANIAS PSKORDALAKIS E.An efficient sequential clustering method[J].Pattern Recognition198922(4):449-453.
  • 7BEIS J,LOWE D G.Shape indexing using approximate nearestneighbour search in highdimensional spaces[C]//Conference on Computer Vision and Pattern RecognitionPuerto Rico1997:1000-1006.
  • 8ARYA SMOUNT D M.Approximate nearest neighbor queries in fixed dimensions[C]//The Fourth Annual ACMSIAM Symposium on Discrete Algorithms,1993:271-280.
  • 9HARTLEY R,ZISSERMAN A.Multiple view geometry in computer vision[M].2nd ed.Cambrige:Cambridge University Press2003:87-129.
  • 10FISCHLER M ABOLLES R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM198124(6):381-395.

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部