期刊文献+

基于分布式压缩感知的H.264帧间编码 被引量:1

Inter-frame Coding in H.264/AVC Based on Distributed Compressive Sensing
下载PDF
导出
摘要 对视频信号压缩,国际标准算法H.264/AVC的帧间编码技术表现出显著的压缩性能,然而由于编码端依靠相邻帧间相关性进行压缩,造成其在丢包环境中较低的错误恢复能力。分布式压缩感知采用"独立编码-联合解码"框架,克服了编码端对帧间相关性的依赖,同时由于它对图像进行随机观测,对随机丢失具有较好的容错性。因此,本文将分布式压缩感知技术融合到H.264中,提出一种鲁棒的分布式压缩感知帧间编码方法:编码端仍采用H.264的运动估计并将运动矢量传送到解码端,同时用随机观测值代替运动估计残差并发送到解码端,解码端利用运动补偿的边信息进行压缩感知优化重构。为提高性能,同时提出对图像块的去均值观测、对观测值的合理打包以及解码端残差重构等方法。实验结果表明,在丢包环境下,本文提出的帧间编码模式比H.264具有更高的错误恢复能力。 The inter-frame coding in H. 264/AVC has excellent performance in coding efficiency, however,it is vulnerable to channels errors due to the exploitation of dependences between the adjacent frames at the encoder side. Based on the paradigm of separate encoding and joint decoding, distributed compressive sensing (DCS) offers a robust solution to the channel errors and at the same time, because of the random measurement, it has better error-resilience. In this paper, by integrating the respective characteristics of DCS and H. 264/AVC, inter-frame coding with DCS was proposed. The encoder replaces the residual with random measurements but still keeps the motion estimation and sends motion vector (MV) to the decoder; at the decoder side, the received measurements and side information (from motion-compensation) are both employed in joint CS decoding. In order to improve the performance, we also proposed some modifications such as the measurement algorithm removing the mean of image, the reasonable packaging method, the residual reconstruction and so on. The experimental results show that the proposed inter-frame coding is more robust against packet losses than that of H. 264/AVC in the environment of packet loss channels.
出处 《铁道学报》 EI CAS CSCD 北大核心 2013年第3期41-47,共7页 Journal of the China Railway Society
基金 国际科技合作项目(2010DFA11010) 国家自然科学基金(61073142) 山西省国际科技合作项目(20110081055) 山西省高等学校优秀青年学术带头人支持计划(2011) 山西省自然科学基金(2012011014-3) 山西省人才引进与开发专项资金(2011)
关键词 错误恢复 分布式压缩感知 帧间编码方式 error-resilience distributed compressive sensing inter-frame coding
  • 相关文献

参考文献12

  • 1BERND G, ANNE A, SHANTANU R, et al. Distributed Video Coding[J]. Proceeding of the IEEE, 2005, 93(1): 71-83.
  • 2DAVID L D. Compressed Sensing[J]. IEEE Transaction on Information Theory, 2006, 52(4): 1289 1306.
  • 3EMMANUEL C, TERENCE T. Near Optimal Signal Re- covery from Random Projections; Universal Encoding Stra tigies[J]. IEEE Transaction on Information Theory, 2006, 52(12) : 5406-5425.
  • 4EMMANUEl- J C, MICHAEL B W. An Introduction to Compressive Sampling[J]. IEEE Signal Processing Maga- zine, 2008, 25(2): 21-30.
  • 5DROR B, MICHAEL B W, MARCO F D, et al. Distribu ted Compressive Sensing[EB/OL]. http ://arxiv. org/abs/ 0901. 3403, 2009-1-21.
  • 6KANG Li-wei, LU Chumshien. Distributed Compressive Video Sensing [C]//Proceedings of IEEE International. Conference on Acoustics, Speech and Signal Processing. New York: IEEE Prees, 2009: 1169-1172.
  • 7THONG T D, YI C, DZUNG T N, et al. Distributed Compressed Video Sensing[C]// Proceedings of IEEE In ternational Conference on Image Processing. New York: IEEEPrees, 2009:1393-1396.
  • 8GUO Mei, XIONG Zi-xiang, WU Feng. Witsenhausen- Wyner Video Coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21 (8) : 1049- 1060.
  • 9LUG. Block Compressed Sensing of Natural Images[C]//Proceedings of IEEE International Conference on Digital Signal Processing. New York.. IEEE Prees, 2007 : 403-406.
  • 10SUNGKWANG M, JAMES E F. Block Compressed Sensing of Images Using Directional Transforms[C]// Proceedings of IEEE International Conference on Image Processing. New York:IEEE Prees, 2009: 3021-3024.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部