期刊文献+

具有隔离因素的流行病模型的免疫接种效率分析 被引量:1

Efficiency Analysis of Vaccination of an Epidemic Model with Quarantine
下载PDF
导出
摘要 研究了脉冲接种形式下具有隔离因素的流行病模型,讨论了无病周期解的存在性,证明了该周期解的全局渐进稳定性,并给出了模型的基本再生数.最后对脉冲接种和常数接种的接种效率进行了比较. Pulse vaccinations of epidemical models with quarantine have been studied in this paper.In the SIQR epidemical models with pulse vaccinations,the existence of the infection-free periodic solution has been discussed.Also,it has been proven the global asymptotic stabilities of the infection-free periodic solutions.The basic reproduction numbers have been obtained for those models.Finally,efficiency analysis of pulse vaccinations and constant vaccinations has been compared and contrasted.
作者 魏巍 李蒙
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期6-9,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(60876014) 河南省高校青年骨干教师计划项目(2010GGJS-170) 河南省自然科学基础研究基金项目(102300410173)
关键词 隔离 SIQR流行病模型 常数接种 脉冲接种 quarantine SIQR epidemic model constant vaccination pulse vaccinations
  • 引文网络
  • 相关文献

参考文献6

  • 1魏巍,刘少平,舒云星.脉冲接种作用下具有垂直传染的SIR模型的定性分析[J].大学数学,2008,24(3):84-87. 被引量:11
  • 2DONOFRIO A. On Pulse Vaccination Strategy in the SIR Epidemic Model with Vertical Transmission [J]. Applied Mathematics Letters, 2005, 18(7) : 729--732.
  • 3GAO Shu-jing, CHEN Lan-sun, SUN Li-hua. Dynamic Complexities in a Seasonal Prevention Epidemic Model with Birth Pulses [J]. Chaos, Solitons and Fractals, 2005, 26(4): 1171--]181.
  • 4HERBERT H, MA Zhi-en, LIAO Sheng-bing. Effects of Quarantine in Six Endemic Models for Infectious Diseases [J]. Mathematical Biosciences, 2002, 180(1): 141--160.
  • 5FENG Z, THIEME H R. Endemic Models with Arbitrarily Distributed Periods of Infection [J]. J Applied Mathematics, 2000, 61(3): 803--833.
  • 6李秋英,张凤琴,刘汉武.一类具有分布时滞和隔离的传染病模型[J].西南大学学报(自然科学版),2011,33(11):43-48. 被引量:1

二级参考文献14

  • 1李建全,王峰,马知恩.一类带有隔离的传染病模型的全局分析[J].工程数学学报,2005,22(1):20-24. 被引量:26
  • 2MA Wan-biao, TAKEUCHI Y, HARA T, et al. Permanence of an SIR Epidemic Model with Distributed Time Delays [J]. Tohoku Math J, 2002, 54: 581-591.
  • 3HALE J K. Theory of Functional Differential Equations [M]. New York.. Springer, 1977.
  • 4Agur Z, Shulgin B and Stone I.. Pulse vaccination strategy in the SIR epidemic model[J]. Bulletin of Mathematical Biology, 1998, 60: 1123-1148.
  • 5Zhen J. Research on impulsive ecological and epidemical model (the doctor degree's article [D]. Xi'an Jiaotong Unvi; 2001. [in Chinese].
  • 6d'Onofrio A. Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures[J]. Math. Comp. Mod, 2002, 36: 473-489.
  • 7d'Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model [J]. Mathematical Biosciences, 2002, 179:57-72.
  • 8Fine P M. Vectors and vertical transmission, An epidemiological perspective[J]. Annals N. Y. Acad, Sci, 1975, 266: 173-194.
  • 9Busenberg Set al. Analysis of a model of a vertically transmitted disease[J]. J. Math. Bwlogy, 1983, 17:305-329.
  • 10Balnov D D, I.akshmikantham V and Simeonov P S. Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics[M]. Singapore: World Scientific, 1989, Volume 6.

共引文献10

引证文献1

;
使用帮助 返回顶部