期刊文献+

关于超二次Hamilton系统周期解的注记

Notes on Periodic Solutions to Superquadratic Hamiltonian Systems
下载PDF
导出
摘要 用极小极大方法得到了一类超二次一阶Hamilton系统的周期解. By means of the minimum method,the existence of periodic solutions to a class of superquadratic first-order Hamiltonian systems is obtained.
作者 叶一蔚
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期42-45,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金资助(XDJK2012) 西南大学研究生科技创新基金项目(Ky2011010)
关键词 超二次 HAMILTON系统 周期解 局部环绕 (C)*条件 superquadratic Hamiltonian systems periodic solution local linking the(C)* condition
  • 相关文献

参考文献10

  • 1OU Zeng-qi, TANG Chun-lei. Periodic and Subharmonic Solutions for a Class of Superquadratic Hamiltonian Systems [J]. Nonlinear Anal, 2004, 58: 245--258.
  • 2LI S J, SZUKLIN A. Periodic Solutions for a Class of Nonautonomous Hamiltonian Systems [J]. J Differential Equa- tions, 1994, 112: 226--238.
  • 3LUAN S X, MAO A M. Periodic Solutions for a Class of Non-Autonomous Hamiltonian Systems [J]. Nonlinear Anal, 2005, 61: 1413--1426.
  • 4FEI Gui-hua. On Periodic Solutions of Superquadratic Hamiltonian Systems [J]. J Differential Equations, 2002, 8: 1--12.
  • 5RABINOWITZ P. On Subharmonie Solutions of Hamiltonian Systems [J]. Comm Pure Appl Math, 1980, 33: 609--633.
  • 6RABINOWITZ Paul H. Periodic Solutions of Hamiltonian Systems [J]. Comm Pure Appl Math, 1978, 31: 157--184.
  • 7LI S J, WILLEM M. Applications of Local Linking to Critical Point Theory [J]. J Math Anal Appl, 1995, 189: 6--32.
  • 8MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems [M]. New York: Springer, 1989.
  • 9欧增奇,唐春雷.关于超二次二阶系统周期解的注记[J].西南师范大学学报(自然科学版),2003,28(1):37-41. 被引量:6
  • 10柯晓峰,唐春雷.共振p-Laplacian方程解的存在性(英文)[J].西南大学学报(自然科学版),2008,30(6):21-26. 被引量:2

二级参考文献20

  • 1宋树枝,唐春雷.拟线性椭圆方程共振问题解的存在定理[J].西南师范大学学报(自然科学版),2005,30(1):1-6. 被引量:9
  • 2欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
  • 3王娟,唐春雷.关于一类渐近线性椭圆方程(英文)[J].西南大学学报(自然科学版),2007,29(6):8-13. 被引量:7
  • 4[1]Rabinowitz P H. Periodic solutions of Hamiltonian systems [J]. Comm Pure Appl Math,1978,31: 157-184.
  • 5[2]Li S J,Willem M. Applications of local linking to critical point theory [J]. J Diff Eq,1995,198: 6-32.
  • 6[3]Lassoued L. Periodic solutions of a second order superquadratic system with a change of sign in the potential [J]. J Diff Eq,1991,93: 1-18.
  • 7[4]Flavia antonacci. Existece of periodic solutions of Hamiltonian system with potential indefine in sign [J]. Nonlinear anal,1997,29: 1353-1364.
  • 8[5]Benci V. Some critical point theorems and applications [J]. Comm Pure Appl Math,1980,33: 146-172.
  • 9[6]Bahri A H,Berestycki. Existence of forced oscillations for some nonlinear differential equations [J]. Comm Pure Appl Math,1984,37: 403-442.
  • 10[7]Mawhin J,Willem M. Critical Point Theory and Hamiltonian Systems [M]. New York: Springer-Verlag,1989.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部