期刊文献+

基于忆阻的自适应单神经元多变量解耦PID控制器 被引量:3

Adaptive Single-Neuron Multivariate Decoupling PID Controller Based on Memristor
下载PDF
导出
摘要 为了解决强耦合问题和控制过程中参数难于调节的问题,提出了基于忆阻的自适应单神经元多变量解耦PID控制器,根据传统控制器的结构和原理,构建了两变量解耦控制器的结构。分析了两变量解耦控制器的性能,给出了实验仿真结果。通过实验结果,发现这个新的两变量解耦控制器具有较高的控制可靠性、较好的适应性,比传统的控制器学习速度快。最后得到了一个理想的、自适应、自组织的多变量解耦控制器,并获得了较好的控制效果。 Memristor is a kind of nonlinear circuit element with memory function when power off.Its resistance value changes automatically with its charge changing and flux changing which can be used as a controllable parameter in the modern control systems.The proportional-integral-derivative(PID) is still the major control mechanism in the majority of manufacturing industries.In recent years,many researchers have proposed a lot of decoupling PID control systems for solving the strong coupling problem and the problem that the control parameters are difficult to adjust in the control process.In this paper,we present a adaptive single-neuron multivariate decoupling PID controller based on memristor.Based on the structure and principle of the traditional controller,the structure and principle of the bivariate decoupling controller with memristor is established.Then the performance of the bivariate decoupling controller is analyzed and the simulation results are shown.According to experimental simulation results,we find out that the new bivariate decoupling controller has higher control reliability and better adaptability and acts more rapidly than the traditional controller.Finally we get the ideal,adaptive and self-organizing multivariate decoupling PID controller and the better control effect of the new controller is achieved.
出处 《重庆理工大学学报(自然科学)》 CAS 2013年第3期91-96,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(60972155 61101233 60974020) 中央高校基本科研业务费专项(XD-JK2012A007 XDJK2010C023) 重庆市高等学校青年骨干教师资助计划(2011-65) 重庆市高等学校优秀人才支持计划(2011-65) 中国博士后科学基金资助项目(CPSF20100470116) 重庆市高等教育教学改革研究重点项目(09-2-011)
关键词 忆阻器 解耦PID控制器 两变量 多变量 单神经元 memristor decoupling PID controller bivariate multivariate single-neuron
  • 相关文献

参考文献10

  • 1Yin Y H. The Intelligent PID control of filature production line slack-loop system[ C]//2011 The 6th International Forum on Strategic Technology. Harbin: [ s. n. ], 2011:378 - 381.
  • 2Bennett Stuart. A history of control engineering, 1930 - 1955 [ M ]. [ S.l. ] : The Institution of Engineering and Technology (IET) ,1993.
  • 3Chen J, Cheng N, Zhang J. Neural based PID control for networked processes [ C ]//Proceedings of the 2011 4th International Symposium on Advanced Control of Industrial Processes. Hangzhou: [ s. n. ] ,2011:466 -471.
  • 4Chen X X,Wang C G,Wu H Z. PID:Controllers Parameters Self-tuning algorithm based on frequency characteristic [ C]//2010 International Conference on Measuring Technology and Mechatronics Automation. Changsha : [ s. n. ] ,2010:891 -894.
  • 5Zhang Y H, Zhao D. Research on PID Controller Based on the BP Neural Network[ C ]//2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin : IEEE, 2011 : 516 - 519.
  • 6Guangjun Yang, Bing Xiao, Xiaojuan Zhu. A Method of Neuron PID Control Based on Fuzzy Regulating Gain [ J ]. Automatic Control and Meter,2004,19:44 - 46.
  • 7Memristor- The Missing Circuit Element [J]. IEEE Transactions on Circuit Theory, 1971:507 -519.
  • 8Chua L O. Device Modeling via Nonlinear Circuit Elements[ J]. IEEE Transactions on Circuits and Systems, 1980,27 : 1014 - 1044.
  • 9Sharifi M J, Banadaki Y M. General Spice Models for Memristor and Application to Circuit Simulation of Mem- ristor-Based Synapses and Memory Ceils [ J ]. Journal of Circuits, Systems, and Computers ( JCSC ), 2010,19 : 407 -424.
  • 10Corinto F, Ascoli A, Gilli M. Memristive Based Oscillatory Associative and Dynamic Memories [ C]//Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop on,2010:1 -6.

同被引文献24

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部