期刊文献+

基于GPU加速的边界面法正则积分的研究 被引量:4

Research on Regular Integration in Boundary Face Method Based on GPU-acceleration
下载PDF
导出
摘要 基于GPU高性能并行计算,在CUDA编程环境中实现边界面法正则积分的并行加速.在NVIDIA GTX680GPU和英特尔(R)酷睿(TM)i7-3770KCPU的计算平台上与传统的正则单元积分对比.数值算例表明,在保证相同精度的前提下,加速比可达到8.3. Based on GPU high-performance parallel computation, a parallel acceleration of regular integration in boundary face method (BFM) has been implemented in CUDA (Compute Unified Device Archi- tecture) programming environment. Comparative computations compared with traditional regular element integration were made on both NVIDIA GTX680 GPU and Intel(R) Core(TM) i7-3770K CPU. Numerical examples show that, a speedup of 8.3x has been achieved at the same level of accuracy.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期41-45,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10972074 11172098)
关键词 GPU 并行计算 加速 边界面法 CUDA 正则积分 GPU parallel computing acceleration BFM CUDA regular integration
  • 相关文献

参考文献18

  • 1NAMATA T, SUDA R. APTCC: auto parallelizing translator from C to CUDA[J]. Procedia Computer Science,2011,4:352-361.
  • 2李波,赵华成,张敏芳.CUDA高性能计算并行编程[J].微型电脑应用,2009(9):55-57. 被引量:15
  • 3Nvidia Corporation. CUDA C programming guide[EB/OL]//(2011- 03-06) [2012-09-05]. http://www, does. nvidia, com/cuda.
  • 4Nvidia Corporation. Parallel programming and computing platform [EB/OL]. (2012-04-13) [2012-09-05]. http://www, nvidia, com/ object/cuda_home_new. html.
  • 5Nvidia Corporation. CUDA C Best Practices Guide[EB/OL]. (2011- 03-06) [2012-09-05]. http://www, docs. nvidia, com/cuda.
  • 6焦良葆,陈瑞.GPU核函数细化研究[J].计算机工程,2010,36(18):10-12. 被引量:3
  • 7HARRIS C, HAINES K, STAVELEY -SMITH L. GPU accelerated radio astronomy signal convolution[J]. Experimental Astronomy, 2008, 22(1): 129-142.
  • 8CORRIGAN A, CAMELLI F F, LOHNER R, et al. Running un- structured grid-based CFD solvers on modem graphics hardware[J]. International Journal for Numerical Methods in Fluids, 2011, 66(2) : 221-229.
  • 9CRANE K, LLAMAS I, TARIQ S. Real-time simulation and ren- dering of 3d fluids[J]. GPU Gems, 2007, 3:663-675.
  • 10PICHEL J C, RIVERA F F, FERNANDEZ M, et al. Optimization of sparse matrix-vector multiplication using reordering techniques on GPUs[J]. Microprocessors and Microsystems, 2012, 36(2) :65-77.

二级参考文献11

  • 1CUDA.大规模并行计算的利器.程序员,2008,(3).
  • 2NVIDIA CUDA统一计算设备架构编程指南[Z].NVIDA.2007.
  • 3NVIDIACorporation. CUDAProgrammmg Guide 0.8 [Z] 2006:36-37.
  • 4Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Arie E. Kaufman, and Klaus Mueller. Visual simulation of heat shimmering and mirage [ J ]. IEEE Transactions on Visualization and Computer Graphics, 2007,13(1): 179- 189.
  • 5David A. Bader and Kamesh Maddttri. Parallel algorithms for evaluating centrality indices in real-world networks. In ICPP '06: Proceedings of the 2006 International Conference on Parallel Processing, pages 539-550, Washington, DC, USA, 2006. IEEE Computer Society.
  • 6Kanter D.NVIDIA's GT200--Inside a Parallel Processor[EB/OL].(2008-01-01).http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=5.
  • 7Walter B,Drettakis G,Greenberg D P.Enhancing and Optimizing the Render Cache[C] //Proc.of the 13th Eurographics Workshop on Rendering.Pisa,Italy:[s.n.] ,2002.
  • 8Foley T,Sugerman J.KD-tree Acceleration Structures for a GPU Ray Tracer[C] //Proc.of ACM SIGGRAPH/Eurographics Conf.on Graphics Hardware.New York,USA:ACM Press,2005.
  • 9Parker S,Parker M.Interactive Ray Tracing for Large Volume Visualization[J].IEEE Trans.on Computer Graphics and Visualization,2003,5(3):1-13.
  • 10Wald I.Real-time Ray Tracing and Interactive Global Illumination[D].Saarbruecken,Germany:Saarland University,2004.

共引文献16

同被引文献35

  • 1陈海波,金建峰,张培强,吕品.Multi-Variable Non-Singular BEM for 2-D Potential Problems[J].Tsinghua Science and Technology,2005,10(1):43-50. 被引量:2
  • 2龙述尧.边界单元法概论[M].北京:中国科学文化出版社,2002:214-253.
  • 3朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1998.
  • 4ZHANG J M, TANAKA M. Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites[J]. Computational Mechanics, 2008, 41:777-787.
  • 5HANG J M, YAO Z H, LI H. A hybrid boundary node method[J]. International Journal for Numerical Methods in Engineering, 2002, 53:751-763.
  • 6ZHANG J M, YAOZ H, TANAKA M. The meshless regular hy- brid boundary node method for 2-D linear elasticity[J]. Engineering Analysis with Boundary Elements, 2003, 27:259-268.
  • 7QIN X Y, ZHANG J M, LI G Y,etal. A finite element implemen- tation of the boundary face method for potential problems in three di- mensions[J]. Engineering Analysis with Boundary Elements, 2010, 34 : 934- 943.
  • 8GU J L, ZHANG J M, LI G Y. Isogeometric analysis in BIE for 3- D potential problem[J]. Engineering Analysis with Boundary Ele- ments, 2012,36 : 858- 865.
  • 9GU J L, ZHANG J M, SHENG X M, etal. P,-spline approximation in boundary face method for three dimensional linear elasticity[J]. Engineering Analysis with Boundary Elements,2011,35:1159- 1167.
  • 10GU J L, ZHANG J M, SHENG X M. The boundary face method with variable approximation by b-spline basis function[J]. Interna- tional Journal of Computational Methods, 2012,9: 9- 18.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部