期刊文献+

随机需求条件下多商品混合运输供应链网络均衡模型及其求解方法 被引量:1

Solution Method for Multi-Commodity Supply Chain Network Equilibrium Model with Mixed Transportation under Random Demand
下载PDF
导出
摘要 研究了随机需求环境下具有相互关联的多种商品供应链网络均衡问题.在研究多商品混合运输的同时考虑了需求的不确定性,建立了具有商品交叉运输成本的随机多商品混合运输供应链网络均衡模型,分析了交叉运输成本和罚金对供应链的影响;建立了求解随机多商品混合运输供应链网络均衡模型的投影压缩算法,获得了收敛性结果;数值实例证实了该模型及其求解算法的有效性,同时表明,对于该模型的求解,所运用的投影压缩算法优于普遍采用的修正投影算法和拟牛顿算法. A supply chain network equilibrium problem with correlative multi-commodity with random demand was investigated, and multi-commodity with mixed transportation and uncertainty of market de- mand were considered. A stochastic supply chain network equilibrium model with mixed transportation of multi-commodity was proposed, and cross transportation costs and fines on the impact of supply chain net- work was analyzed. A projection and contraction method was applied to solve the proposed supply chain model. It is provedd to be convergent to the solution of the stochastic supply chain network equilibrium model. A numerical practical example shows that the model and the method are effective. It also shows that the projection and contraction algorithm is better than modified projection method and quasi-Newton method in solving the supply chain network equilibrium model.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期99-103,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61171018) 中国博士后特别资助项目(201003508) 湖南省自然科学基金资助项目(12JJ6003)
关键词 供应链 网络均衡 多商品混合运输 随机市场需求 投影压缩算法 supply chains network equilibrium multi-commodity mixed transportation random mar-ket demand projection and contraction method
  • 相关文献

参考文献9

  • 1NAGURNEY A, DONG J, ZHANG D. A supply chain network e- quilibrium model[J]. Transportation Research E, 2002, 38: 281- 303.
  • 2DONG J, ZHANG D, NAGURNEY A. A supply chain network e- quilibrium model with random demands[J]. European Journal of Op- erational Research, 2004,156 ~ 194- 212.
  • 3QIANG Q, NAGURNEY A. A hi-criteria indicator to assess supply chain network performance for critical needs under capacity and de- mand disruptions[J]. Transportation Research A, 2012, 46(5): 801 -812.
  • 4刘诚,李伟,瞿攀.随机需求条件下闭环供应链网络均衡[J].系统工程,2008,26(8):11-16. 被引量:18
  • 5滕春贤,姚锋敏,胡宪武.具有随机需求的多商品流供应链网络均衡模型的研究[J].系统工程理论与实践,2007,27(10):77-83. 被引量:75
  • 6孙德锋.广义非线性互补问题的投影收缩法[J].计算数学,1994,16(2):183-194. 被引量:13
  • 7HE B S. A class of projection and contraction methods for monotone variational inequalities[J]. Applied Mathematics and Optimization, 1997, 35: 69-76.
  • 8HE B S, YUAN X M, ZHANG J Z. Comparison of two kinds of prediction-correction methods for monotone variational inequalities [J]. Computational Optimization and Applications, 2004, 27: 247- 267.
  • 9PANG J S, FRACCHINEI E Finite-dimentional variational inequali- ties and complementarity problems [M]. NewYork: Springer-Ver- lag, 2003.

二级参考文献22

  • 1徐庆,朱道立,鲁其辉.Nash均衡、变分不等式和广义均衡问题的关系[J].管理科学学报,2005,8(3):1-7. 被引量:24
  • 2张铁柱,刘志勇,滕春贤,胡运权.多商品流供应链网络均衡模型的研究[J].系统工程理论与实践,2005,25(7):61-66. 被引量:81
  • 3He B,Appl Math Opti,1992年,25卷,247页
  • 4He B,Numer Math,1992年,61卷,73页
  • 5孙德锋,1992年
  • 6He B,Shu Xue Banian Kan,1989年,6卷,4页
  • 7Pang J S,Math Prog,1982年,24卷,284页
  • 8Nagurney A,Zhao L.Variational inequalities and networks in the formulation and computation of market equilibria and disequilibria:The case of direct demand functions[J].Transportation Science,1993,27(1):4-15.
  • 9Nagurney A.Network Economics:A Variational Approach,Second and Revised Edition[M].Kluwer Academic Publisher,Dordrecht,The Netherlands,1999.
  • 10Nagurney A,Dong J,Zhang D.A supply chain network equilibrium model[J].Transportation Research:Part E,2002,38 (5):281-303.

共引文献96

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部