期刊文献+

重组NADH氧化酶对乳酸脱氢酶乳酸氧化活性的影响 被引量:1

Effects of Recombinant NADH Oxidase on the Lactate Oxidation Activity of Lactate Dehydrogenase
下载PDF
导出
摘要 [目的]考察当存在其他利用NADH途径时,发酵型乳酸脱氢酶(lactate dehydrogenase,LDH)催化乳酸氧化能力的改变。[方法]PCR扩增乳酸乳球菌(Lactococcus lactis,L.lactis)中生成H2O的NADH氧化酶基因noxE,将其连接至表达载体并在大肠杆菌中过量表达;对亲和纯化的产物进行SDS-PAGE分析、光谱扫描和活性测定,考察纯化产物是否具有生物学活性;以2,4-二硝基苯肼法测定乳酸脱氢酶的乳酸氧化活性,考察添加NoxE重组蛋白对其活性的影响。[结果]重组NoxE蛋白是种黄素蛋白,具明显的生物学活性,说明noxE表达载体构建成功;添加NoxE后,LDH的乳酸氧化活性提高了3.84倍。[结论]在NADH经呼吸链代谢掉的生理条件下,LDH催化乳酸氧化的能力会明显提高。 [Objective] To compare the lactate oxidation activity of lactate dehydrogenase(LDH) in the presence and absence of another NADH utilization pathway.[Method] The H2O-producing NADH oxidase gene(noxE) was cloned by PCR from Lactococcus lactis genome,ligated into the expression vector and expressed in E.coli.After affinity purification,the recombinant protein was analyzed by SDS-PAGE,UV-vis absorption spectrum and determination of enzyme activity.2,4-Dinitrophenylhydrazine was used to evaluate the effect of NoxE addition on the lactate oxidation activity of LDH.[Result]NoxE was purified as a flavin protein with significant activity.When NoxE was added,the lactate oxidation activity of LDH was increased 3.84-fold.[Conclusion]The lactate oxidation capacity of LDH will be significantly increased under physical conditions where NADH can be consumed via respiration chain.
作者 赵蕊 霍贵成
出处 《安徽农业科学》 CAS 2013年第5期1918-1919,1927,共3页 Journal of Anhui Agricultural Sciences
基金 国家863项目(2011AA100902) 国家自然科学基金(31171717和30972131)
关键词 乳酸菌 乳酸脱氢酶 NADH氧化酶 Lactic acid bacteria Lactate dehydrogenase NADH oxidase
  • 相关文献

参考文献11

  • 1DUWAT P,SOURICE S,CESSELIN B,et al.Respiration capacity of thefermenting bacterium Lactococcus lactis and its positive effects on growthand survival[J].J Bacteriol,2001,183(15):4509-4516.
  • 2SIJPESTEIJN A K.Induction of cytochrome formation and stimulation ofoxidative dissimilation by hemin in Streptococcus lactis and Leuconostocmesenteroides[J].Antonie Leeuwenhoek,1970,36(1):335-348.
  • 3KOEBMANN B,BLANK L M,SOLEM C,et al.Increased biomass yield ofLactococcus lactis during energetically limited growth and respiratory condi-tions[J].Biotechnol Appl Biochem,2008,50(1):25-33.
  • 4LAN C Q,ODDONE G,MILLS D A,et al.Kinetics of Lactococcus lactisgrowth and metabolite formation under aerobic and anaerobic conditions inthe presence or absence of hemin[J].Biotechnol Bioeng,2006,95(6):1070-1080.
  • 5CHAO G,TIANYI J,PEIPEI D,et al.NAD-Independent L-Lactate De-hydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeriSDM[J].PLoS One,2012,7:36519.
  • 6SEKI M,IIDA K,SAITO M,et al.Hydrogen peroxide production in Strepto-coccus pyogenes:involvement of lactate oxidase and coupling with aerobicutilization of lactate[J].J Bacteriol,2004,186(7):2046-2051.
  • 7PINCHUK G E,RODIONOV D A,YANG C,et al.Genomic reconstructionof Shewanella oneidensis MR-1 metabolism reveals a previously uncharac-terized machinery for lactate utilization[J].Proc Natl Acad Sci USA,2009,106(8):2874-2879.
  • 8GOFFIN P,LORQUET F,KLEEREBEZEM M,et al.Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactoba-cillus plantarum during early stationary phase[J].J Bacteriol,2004,186(19):6661-6666.
  • 9WEGMANN U,O’CONNELL-MOTHERWAY M,ZOMER A,et al.Com-plete genome sequence of the prototype lactic acid bacterium Lactococcuslactis subsp.cremoris MG1363[J].J Bacteriol,2007,189(8):3256-3270.
  • 10TACHON S,CHAMBELLON E,YVON M.Identification of a ConservedSequence in Flavoproteins Essential for the Correct Conformation and Ac-tivity of the NADH Oxidase NoxE of Lactococcus lactis[J].J Bacteriol,2011,193(12):3000-3008.

同被引文献15

  • 1李剑,唐赟,梁凤来,张心平,刘如林.L-乳酸脱氢酶基因克隆及功能分析[J].生物工程学报,2004,20(5):725-729. 被引量:6
  • 2王海燕,刘铭,王化军,曹竹安.乳酸生产中的微生物代谢工程[J].过程工程学报,2006,6(3):512-516. 被引量:14
  • 3范秀容,沈萍.微生物学实验[M].北京:高等教育出版社,1999.
  • 4Jiang X, Xue YF, Wang AY, et al. Efficient production of polymer-grade L-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions[J]. Bioresource Technology, 2013, 143:665-668.
  • 5Gao C, Ma CQ, Xu P. Biotechnological routes based on lactic acid production from biomass[J]. Biotechnology Advances, 2011, 29(6): 930-939.
  • 6Fan Y, Zhou C, Zhu X. Selective catalysis of lactic acid to produce commodity chemicals[J]. Catalysis Reviews, 2009, 51(3): 293-324.
  • 7Okano K, Tanaka T, Ogino C, et al. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent chievements, perspectives, and limits[J]. Applied Microbiology and Biotechnology, 2010, 85(3): 413-423.
  • 8Wang LM, Zhao B, Liu B, et al. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain[J]. Bioresource Technology, 2010, 101(20): 7908-7915.
  • 9Wang LM, Xue ZW, Zhao B, et al. Jerusalem artichoke powder: a useful material in producing high-optical-purity L-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain[J]. Bioresource Technology, 2013, 130: 174-180.
  • 10Tiina M, Karin K, Eerik J. et al. L(+)-lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073[J]. Enzyme and Microbial Technology, 2007, 39(4): 861-867.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部