期刊文献+

基于原子力显微镜对多肽自组装结构的纳米操纵研究

Mechanical nanomanipulation of individual peptide nanofilaments based on AFM
下载PDF
导出
摘要 多肽自组装作为一种"自下而上"的技术得到了快速的发展,所形成的自组装结构作为新型的纳米材料具有众多潜在的应用。然而在多肽自组装过程中,会产生各种各样的缺陷,导致多肽纤维形成的图案有一定的局限性。本文利用原子力显微镜对固液界面生长的多肽自组装结构进行纳米操纵,介绍了定位移除部分多肽纤维从而产生缺口的方法,并利用所产生的缺口实现了纳米纤维的重新排布,极大地提高了多肽纳米纤维构成图案的复杂性,在纳米制造中有潜在的应用。 The rapidly developing peptide self-assembly is a "bottom to up" technology that has potential applications in nanomanufacturing.However,the normally self-assembled peptide structures contain some defects.In addition,the patterns formed by the assembled peptide structures on solid surfaces are limited.In this paper,we report that atomic force microscope(AFM)-based mechanical operation can be used to manipulate individual peptide filaments.Positioning removing a part of the pre-formed peptide nanofilaments was achieved,which resulted in gaps on the peptide filaments.By increasing the peptide concentration,the gaps could be filled by peptide monomers.By removing junction part of two peptide filaments,the extending of the filaments could be restored,so that a crossed pattern was formed.With the AFM nanomanipulation method,complicated patterns formed by individual peptide filaments could be obtained,which has potential applications in nanomanufacturing.
出处 《电子显微学报》 CAS CSCD 2013年第1期30-34,共5页 Journal of Chinese Electron Microscopy Society
基金 国家自然科学基金资助项目(No.10975175 No.90923002 No.21073222 No.11079050) 中国科学院知识创新工程重要方向资助项目(KJCX2-EW-N03) 德国马普学会对一个伙伴研究小组的资助
关键词 多肽 自组装 原子力显微镜 纳米操纵 peptide self-assembly atomic force microscope(AFM) nanomanipulation
  • 相关文献

参考文献19

  • 1Kisiday J, Jin M, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair [ J]. P Nat1 Acad Sci USA, 2002, 999 (15) : 9996 - 10001.
  • 2Ellis-Behnke R G, Liang Y X, et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision [ J ]. P Natl Acad Sci USA, 2006, 103(19) :5054 -5059.
  • 3Dry C. Procedures developed for self-repair of polymer matrix composite materials [ J]. Compos Struct, 1996, 35 ( 3 ) : 263 - 269.
  • 4Caroff P, Dick K A, et al. Controlled polytypic and twin-plane superlattices in III-V nanowires [ J 1. Nat Nanotechnol, 2009, 4( 1 ) :50 - 55.
  • 5Liu X G, Zhang Y, et al. The controlled evolution of a polymer single crystal [ J ], Science, 2005, 307 (5716) :1763 - 1766.
  • 6Pandya M J, Spooner G M, et al. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis [ J ]. Biochemistry-Us, 2000, 39 (30) : 8728 - 8734.
  • 7Wagner D E, Phillips C L, et al. Toward the development of peptide nanofilaments and nanoropes as smart materials [J. P Natl Acad Sei USA, 2005, 102 (36) : 12656 - 12661.
  • 8Scheibel T, Parthasarathy R, et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition [ J]. P Natl Acad Sci USA, 2003, 100(8) : 4527 -4532.
  • 9Lashuel H A, LaBrenz S R, et al. Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self- assembly: Implications for amyloid fibril formation and materials science [ J]. J Am Chem Soc, 2000, 122 (22) :5262 - 5277.
  • 10Adler-Abramovich L, Aronov D, et al. Self-assembled arrays of peptide nanotubes by vapour deposition [ J]. Nat Nanotechnol, 2009, 4( 12 ) : 849 - 854.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部