期刊文献+

压缩感知中基于快速交替方向乘子法的l_0-正则化信号重构 被引量:9

l_0-regularisation Signal Reconstruction Based on Fast Alternating Direction Method of Multipliers for Compressed Sensing
下载PDF
导出
摘要 该文将压缩感知(CS)中信号的重构问题归结为求解l0-正则化问题,针对l0-正则化问题求解比较困难,提出了快速交替方向乘子法(FADMM)。该算法首先将信号的稀疏域的l0-正则化问题通过变量分裂技术转化为约束优化问题;然后引入乘子函数,采用一步Gauss-Seidel思想,对优化问题中的变量极小化;为了加快算法的收敛速度,对变量进行了二次更新,并更新了乘子;最后进行反正交变换,实现对原始信号的重构。将FADMM应用于含噪声图像的重构,进行了仿真实验及对实验结果进行了分析。实验结果表明:FADMM具有更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更快速的收敛速度。 Fast Alternating Direction Method of Multipliers (FADMM) is proposed to solve the l0-regularisation issue, which is a problem of signal compression and reconstruction for Compressed Sensing (CS). The first step of FADMM is to express the l0-regularisation issue of the sparse coefficient as a constrained optimization issue by using variable splitting technology. Then, by introducing the function of multipliers, the two variables are alternatively minimized by Gauss-Seidel method. And the two variables are updated once again to speed up the convergence rate, and then, the variable of multipliers is updated. Finally, the original signal is reconstructed by the orthogonal inverse transform. FADMM is better than other state-of-the-art algorithms on reconstructing image And the experimental simulations demonstrate that the FADMM algorithm has a higher Peak Signal to Noise Ratio (PSNR) and a faster convergence rate.
作者 杨真真 杨震
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第4期826-831,共6页 Journal of Electronics & Information Technology
基金 国家973计划项目(2011CB302903) 国家自然科学基金(60971129 61271335 61070234) 江苏省普通高校研究生科研创新计划(CXZZ12_0469)资助课题
关键词 压缩感知 信号重构 l0-正则化 乘子法 快速交替方向乘子法 Compressed Sensing (CS) Signal reconstruction l0-regularisation Method of Multipliers (MM) Fast Alternating Direction Method of Multipliers (FADMM)
  • 相关文献

参考文献2

二级参考文献120

  • 1张军.求解不适定问题的快速Landweber迭代法[J].数学杂志,2005,25(3):333-335. 被引量:6
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 4Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Blumensath T,Davies M.Iterative thresholding for sparse approximations[J].Journal of Fourier Analysis and Applications, 2008,14(5):629-654.
  • 6Blumensath T,Davies M.Iterative hard thresholding for compressed sensing[J].Applied and Computational Harmonic Analysis,2009,27(3):265-274.
  • 7Blumensath T,Davies M.Normalized iterative hard thresholding:guaranteed stability and performance[J]. IEEE Journal of Selected Topics in Signal Processing, 2010,4(2):298-309.
  • 8Bioucas Dias J M and Figueiredo M A T.A new TWIST: two-step iterative Shrinkage/Thresholding algorithm for image restoration[J].IEEE Transcations on Image Processing, 2007,16(12):2980-2991.
  • 9Ma J W.Improved iterative curvelet thresholding for compressed sensing.http:// www.dsp.ece.rice.edu/files/ cs/ISTcs2.pdf,Preprint,2009.
  • 10Blumensath,T.Accelerated Iterative Hard Thresholding. preprint,2011.

共引文献330

同被引文献80

  • 1张继贤,李国胜,曾钰.多源遥感影像高精度自动配准的方法研究[J].遥感学报,2005,9(1):73-77. 被引量:45
  • 2杨迪武,邢达,王毅,谭毅,尹邦政.基于代数重建算法的有限角度扫描的光声成像[J].光学学报,2005,25(6):772-776. 被引量:19
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4向良忠,邢达,谷怀民,杨迪武,杨思华,曾吕明.改进的同步迭代算法在光声血管成像中的应用[J].物理学报,2007,56(7):3911-3916. 被引量:14
  • 5袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学技术出版社,2002.96.
  • 6DONOHO D L. Compressed sensing [ J ]. IEEE Transactions on In- formation Theory,2006,52 (4) : 1289 - 1306.
  • 7CANDES E. Compressive sampling [ C ] // Proceedings of the Inter- national Congress of Mathematics. 2006,3 : 1433 - 1452.
  • 8DONOHO D L, TSAIG Y, STACK J L. Sparse solution of underde- termined linear equation by stagewise orthogonal matching pursuit [ J]. IEEE Transactions on Information Theory,2012,58 ( 2 ) : 1094 -1121.
  • 9CANDES E, ROMBERG J,TAO T. Robust uncemtainty principles: Exact signal reconstruction from highly incomplete frequency infor- mation[ J]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 -509.
  • 10GONZALES J G, ARCE G R. Statistically-efficient filtering in im- pulsive environments:weighted myriad filters[ J ]. EURASIP Journal on Applied Signal Processing,2002 (1) :4 -20.

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部