期刊文献+

一种SRAM型FPGA抗软错误物理设计方法 被引量:2

A Physical Design Approach for Mitigating Soft Errors in SRAM-based FPGAs
下载PDF
导出
摘要 针对SRAM(Static Random Access Memory)型FPGA单粒子翻转引起软错误的问题,该文分析了单粒子单位翻转和多位翻转对布线资源的影响,提出了可以减缓软错误的物理设计方法。通过引入布线资源错误发生概率评价布线资源的软错误,并与故障传播概率结合计算系统失效率,驱动布局布线过程。实验结果表明,该方法在不增加额外资源的情况下,可以降低系统软错误率约18%,还可以有效减缓多位翻转对系统的影响。 To solve the problem of soft error caused by Single Event Upset (SEU) in Static Random Access Memory (SRAM)-based Field Programmable Gate Arrays (FPGAs), the impact of routing resources by Single Bit Upset (SBU) and Multiple Bit Upset (MBU) is analyzed. A new method of soft-error-mitigation physical design approach is presented. In the approach, the error probability of routing resources is introduced for evaluation soft error. Combined with error propagation probability, system failure rate is calculated for driving placement and routing. The experimental results show that the system failure rate decreases about 18% using proposed method. This method can also effectively mitigate effect of multiple bit upset.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第4期994-1000,共7页 Journal of Electronics & Information Technology
关键词 现场可编程门阵列 布局布线 软错误 单粒子翻转 多位翻转 Field Programmable Gate Arrays (FPGA) Placement and routing Soft error Single Event Upset(SEU) Multiple Bit Upset (MBU)
  • 相关文献

参考文献20

  • 1Naumann R C. Radiation-induced soft errors in advanced semiconductor technologies[J]. IEEE Tranactions on Device and Materials Reliability, 2005, 5(3): 305-316.
  • 2Quinn H, Graham P, Krone J, et al.. Radiation-induced Multi-Bit Upsets in SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2217-2223.
  • 3Tipton A D, Pellish J A, Hutson J M, et al.. Device- orientation effects on multiple-bit upset in 65 nm SRAMs[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 2880-2885.
  • 4ITRS. The International Technology Roadmap for Semiconductors (2011Edition)[R]. http://www.itrs.net, 2011.
  • 5谭宜涛,杨海钢,黄娟,郝亚男,崔秀海.基于关键路径的三模冗余表决器插入算法[J].电子与信息学报,2012,34(2):487-492. 被引量:7
  • 6Ruano O, Maestro J A, and Reviriego P. A fast and efficient technique to apply selective TMR through optimization[J]. Microelectronics Reliability, 2011, 51(12): 2388-2401.
  • 7Argyrides C A, Reviriego P, Pradhan D K, et al.. Matrix- based codes for adjacent error correction[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 2106-2111.
  • 8She Xiao-xuan, Li N, and Jensen D W. SEU tolerant memory using error correction code[J]. IEEE Transactions on Nuclear Science, 2012, 59(1): 205-210.
  • 9Asadi G and Tahoori M B. Soft error mitigation for SRAM-based FPGAs[C]. Proceedings of the IEEE VLSI Test Symposium, California, 2005:207- 212.
  • 10Sari A and Psarakis M. Scrubbing-based SEU mitigation approach for systems-on-programmable-chips[C]. Proceedings of Field-Programmable Technology (FPT), New Delhi, 2011: 1-8.

二级参考文献16

  • 1Carmichael C, Fuller E, Blain P, et al.. SEU mitigation techniques for Virtex FPGAs in space applications[C]. Proceedings of the Military and Aerospace Programmable Logic Devices InternationM Conference, Laurel, USA, Sept. 28-30, 1999: 28-30.
  • 2Ostler P, Caffrey M, Gibelyou D, et al.. SRAM FPGA reliability analysis for harsh radiation environments[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3519-3526.
  • 3Yoshihiro Ichinomiya, Shiro Tanoue, Motoki Amagasaki, et al.. Improving the robustness of a softcore processor against SEUs by using TMR and partial reconfiguration[C]. 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, Kumamoto, Japan, May 2-4, 2010: 47-54.
  • 4Morgan K, Caffrey M, Graham P, et al.. SEU-induced persistent error propagation in FPGAs[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2438-2445.
  • 5Manuzzato A, Gerardin S, Paccagnella A, et al.. Effectiveness of TMR-based techniques to mitigate alpha-induced SEU accumulation in cmnmercial SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 1968-1973.
  • 6Samudrala P K, Ramos J, and Katkoori S. Selective triple modular redundancy (STMR) based single-eYent upset (SEU) tolerant synthesis for FPGAs[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2957-2969.
  • 7Siozios K and Soudris D. A methodology for alleviating the performance degradation of TMR solutions[J]. IEEE Embedded Systems Letters, 2010, 2(4): 111-114.
  • 8Pratt B, Caffrey M, Carroll J F, et al.. Fine-grain SEU mitigation for using partial TMR[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 2274-2280.
  • 9Sullivan M A, Loomis H H, and Ross A A. Employment of reduced precision redundancy for fault tolerant FPGA applications[C]. 17th IEEE Symposium on Field Programmable Custom Computing Machines, California, USA, April 5-7, 2009: 283-286. G.
  • 10avros A, Loomis H, and Ross A. Reduced precision redundancy in a Radix-4 FFT implementation on a field programmable gate array[C]. 2011 IEEE Aerospace Conference, Monterey, USA, Mar. 5-12, 2011: 1-15.

共引文献6

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部