期刊文献+

基于预测极性动态变换的分支预测框架研究 被引量:2

Branch Prediction Based on Dynamic Polarity Transformation
下载PDF
导出
摘要 针对动态分支预测错误率在时间上分布不均匀且高错误率比较集中的特点,该文提出一种可动态变换预测极性的分支预测方法。该方法对未经极性变换的原始动态分支预测错误率进行自适应监测,筛选出原始动态分支预测错误率高于阈值的预测错误高峰期,进而调整预测错误高峰期内分支预测器的预测极性,使经过极性变换的最终动态分支预测错误率在程序运行过程中始终低于设定的阈值。该文同时研究了全局监测、按组监测和局部监测3种分支预测错误率监测方式。实验结果表明,相同硬件资源下该方法比Gshare和Bi-Mode分支预测方法具有更高的分支预测精度。 Periods with high branch misprediction rate tend to be uneven and concentrated during execution of programs. To address this problem, a new branch prediction strategy is proposed, which based on dynamic polarity transformation. This approach monitors original branch misprediction rate whose polarity has not been transformed, and detects the periods with original branch misprediction rate higher than a threshold. These periods are called as peaks of misprediction. The polarity of original prediction results will be transformed to make the final prediction during peaks of misprediction. As a result, the final branch misprediction rate whose polarity has been transformed will always be lower than the threshold during execution of programs. The prediction method can be divided into three categories according to the monitoring mechanism, which are global monitor, set monitor and per-address monitor. The experimental results show that this methodology gives better prediction accuracy than Gshare and Bi-Mode prediction schemes for the same cost.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第4期1001-1006,共6页 Journal of Electronics & Information Technology
关键词 大规模集成电路 嵌入式处理器 分支预测 预测错误高峰期 预测极性动态变换 VLSI Embedded processor Branch prediction Peaks of misprediction Dynamic polaritytransformation
  • 相关文献

参考文献15

  • 1Hennessy J and Patterson D. Computer Architecture: A Quantitative Approach[M]. Fifth Edition, Beijing: China Machine Press, 2012:162- 167.
  • 2Jim6nez D. An optimized scaled neural branch predictor[C]. 2011 IEEE 29th International Conference on Computer Design (ICCD), Amherst, 2011:113- 118.
  • 3Jim6nez D. Oh-snap: optimized hybrid scaled neural analog predictor[C]. Proceedings of the 3rd Championship on Branch Prediction, Detroit, 2011:9- 12.
  • 4Yell T and Patt Y. Two-level adaptive training branch prediction[C]. Proceedings of the 24th Annual International Symposium on Microarchitecture, New York, 1991: 51-61.
  • 5Zhang Long, Tao Fang, and Xiang Jin-feng. Researches on design and implementations of two 2-bit predictors[J]. Advanced Engineering Forum, 2011, 1(1): 241-246.
  • 6Young C, Gloy N, and Smith M. A comparative analysis of schemes for correlated branch prediction[C]. Proceedings of the 22nd Annual International Symposium on Computer Architecture. New York, 1995: 276-286.
  • 7TMcott A, Nemirovsky M, and Wood R. The influence of branch prediction table interference on branch prediction scheme performance[C]. Proceedings of tile 3rd Annual International Conference on Parallel Architectures and Compilation Techniques, Manchester, 1995: 89-98.
  • 8Sprangle E, Chappell R, Alsup M, et al.. The agree predictor: mechanism for reducing negative branch history interference[C]. Proceedings of the 24th Annual International Symposium on Computer Architecture, New York, 1997: 284-291.
  • 9Lee C, Chen I, and Mudge T. The bi-mode branch predictor [C]. 30th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'97), Research Triangle Park, NC, 1997:4 -13.
  • 10Seznec A. A 64 kbytes ISL-TAGE branch predictor[C]. Proceedings of the 3rd Championship Branch Prediction, Detroit, 2011: 13-16.

同被引文献21

  • 1Tse-Yu Yeh,and Yale N. Patt.Alternative Implementations of Two-Level Adaptive Branch Prediction. Proceedings of the 19th Annual InternationalSymposium on Computer Architecture . 1992
  • 2Seznec A.A new case for the TAGE branch predictor. Proceedings of the 44th Annual IEEE/ACM InternationalSymposium on Microarchitecture . 2011
  • 3Eden A N,Mudge T.The YAGS branch prediction scheme. International Symposium on Microarchitecture . 1998
  • 4Jiménez D.An optimized scaled neural branch predictor. 2011 IEEE 29th International Conference on ComputerDesign (ICCD) . 2011
  • 5Poovey, Jason A.,Conte, Thomas M.,Levy, Markus,Gal-On, Shay.A benchmark characterization of the EEMBC benchmark suite. IEEE Micro Magazine . 2009
  • 6Jimenez D A.Oh-snap:optimized hybrid scaled neural analog predictor[OL]. http://www.jilp.org/jwac-2/program/cbp3_02_jimenez.pdf . 2014
  • 7Mudge T,Lee C C,Sechrest S.Correlation and aliasing in dynamic branch predictors. Proceedings of the 23rd Annual International Symposium on Computer Architecture . 1996
  • 8Lee C C,Chen I C K,Mudge T N.The Bi-mode branch predictor. Proceedings of the 30th Annual IEEE/ACM International Symposium on Microarchitecture . 1997
  • 9Seznec A.Genesis of the O-GEHL branch predictor[OL]. http://www.jilp.org/vol7/v7paper7.pdf . 2014
  • 10Al-Otoom M,Sheikh R,Rotenberg E.A case for a softwaremanaged reconfigurable branch predictor[OL]. http://www.researchgate.net/publication/259570077_A_Case_for_a_Software-Managed_Reconfigurable_Branch_Predictor/file/72e7e52c98d76c50?2.pdf . 2014

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部