期刊文献+

随机利率下的再保险与投资策略 被引量:7

Optimal Proportional Reinsurance and Investment under Stochastic Interest Rates
下载PDF
导出
摘要 假设保险公司在考虑比例再保险下,并将盈余资金在无风险资产和风险型资产中进行配置,考虑了利率的随机性,建立了求解相应的HJB方程,并针对CARA效用函数求解HJB方程,得出最优的再保险比例和在各类资产中的投资比例。 Assume that the insurer allocates its surplus between risk-free asset and risky asset, we consider the proportional reinsurance policy with a stochastic interest rate and establish Hamilton-Jacobi-Bellman (HJB) equation. We solve it with a CARA utility and obtain optimal reinsurance and investment strategies.
作者 马威 顾孟迪
出处 《系统管理学报》 CSSCI 2013年第2期274-277,共4页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70773076) 上海交通大学文理交叉专项基金资助项目(10JCY11)
关键词 比例再保险 投资决策 随机利率 HJB方程 proportional reinsurance investment stochastic interest rate Hamilton-Jacobi-Bellman(HJB) equation
  • 相关文献

参考文献9

  • 1Merton R C. Optimum consumption and portfolio rules in a continuous times model [J]. Journal of Economics Theory, 1971(3) :373-413.
  • 2Browne S. Optimal investment policies, for a firm with a random risk process exponential utility and minimizing the probability of ruin[J]. Mathematics of Operations Research 1995,20 (4): 937-958.
  • 3黎锁平,刘坤会.随机控制的HJB方程与证券投资模型[J].北方交通大学学报,2003,27(6):63-67. 被引量:5
  • 4Cao Y. Wan N. Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation[J]. Insurance: Mathematics and Economics 2009,45: 157-162.
  • 5Gu M, Yang Y, Li S, et al. Constant elasticity of variance model for proportional reinsurance and investment strategies[J]. Insurance: Mathematics and Economics, 2010, 46: 580-587.
  • 6刘坚,杨向群,颜李朝.随机利率和随机寿命下的欧式未定权益定价[J].广西师范大学学报(自然科学版),2005,23(4):49-52. 被引量:7
  • 7Promislow D S, Young R. Minimizing the probability of ruin when claims follow Brownian motion with drift[J]. North American Actuarial journal. 2005,9 (3) : 109-128.
  • 8罗琰,杨招军.保险公司最优投资及再保险策略[J].财经理论与实践,2009,30(3):31-34. 被引量:13
  • 9Luo S, Taksar M, Tsoi A. On reinsurance and investment for large insurance portfolios, insurance: Mathematics and Economics[J]. 2008,42:434-444.

二级参考文献18

  • 1薛红.具有随机寿命的多维Black-Scholes定价模型[J].系统工程理论与实践,2004,24(8):44-48. 被引量:13
  • 2邓国和,杨向群.N参数d维广义OU过程象集代数和的Hausdorff维数(英文)[J].广西师范大学学报(自然科学版),2004,22(4):31-35. 被引量:1
  • 3Browne,S.,1995.Optimal investment policies for a firm with a random risk process:Exponential utility and minimizing the probability of ruin[J].Mathematics of Operations Research 20 (4),937-958.
  • 4Browne,S.,1997.Survival and growth with liability:Optimal portfolio strategies in continuous time[J].Mathematics of Operations Research 22,468-492.
  • 5Bai,L.,Guo,J.2007.Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint[J].Insurance:Mathematics and Economics (2007),doi:10.1016/j.insmatheco.2007.11.002.
  • 6Gerber,H.U,1979.An Introduction to Mathematical Risk Theory[M].In:Huebner Foundation Monograph,vol.8.
  • 7Krylov R.1980.CntroUed Diffusion Process[M].Spring-Verlag,New York.
  • 8Promislow,D.S.,Young,V.R.,2005.Minimizing the probability of ruin when claims follow Brownian motion with drift[J].North American Actuarial Journal.9(3),109-128.
  • 9杨招军.最优投资与衍生资产定价[M].长沙:湖南大学出版社,2008.
  • 10Black F,Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973,81(3):637-654.

共引文献20

同被引文献44

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部