期刊文献+

pH值对“Fe^0-厌氧微生物”体系去除2,4,6-三氯酚过程的影响 被引量:3

Effect of pH values on process for removal of 2,4,6-trichlorophenol by Fe^0-anaerobic microbe system
原文传递
导出
摘要 考察了pH值对"Fe0-厌氧微生物"体系降解2,4,6,-三氯酚(2,4,6-TCP)效果的影响,结果表明:pH值是影响"Fe0-厌氧微生物"体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH 7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe0腐蚀。 The effect of pH value on the degradation effect of 2,4,6-trichlorophenol (2,4,6-TCP) by "Fe^0-anaerobic microbe" system was observed and studied, and results show that pH value is an important parameter for removing 2,4,6-TCP by "Fe^0-anaerobic microbe" system. Initial pH value directly affects microorganism activity and iron corrosion, and then affects the change of pH value in the process, which, in turn, influences microorganism activity and iron corrosion. The optimal range of pH value for anaerobic microorganism growth is 7.0 - 9.0. Fe^0 and microorganism have a synergistic promoting effect on the reductive dechlorination of 2,4,6-TCP. The mechanism of the synergy shows in three aspects: Fe~ and microbial play complementary role to regulate the pH value to neutral range which is suitable for microbial growth; Fe2+ and H2 produced by the corrosion of Fe~ serves as electron donor and nutrient substance for microbial metabolism, thus promoting the transformation of 2,4,6-TCP;Fe^0corrosion makes chlorinated organics degraded by reductive dechlorination directly, and microbial oromotes the corrosion.
出处 《环境工程学报》 CAS CSCD 北大核心 2013年第4期1273-1278,共6页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(20977072)
关键词 2 4 6-三氯酚厌氧微生物 零价铁 降解 2,4,6-trichlorophenol anaerobic microorganism zero-valent iron degradation
  • 相关文献

参考文献17

二级参考文献81

共引文献118

同被引文献30

  • 1邢晓夏,刘均洪.生物腐蚀的研究进展[J].化学工业与工程技术,2005,26(2):31-34. 被引量:10
  • 2Farshid Ghanbaria, Mahsa Moradi, Fariba Gohari. Degradation of 2,4 6 - trichlorophenol in aqueous solutions activated carbon/UV process via sulfate and hydroxyl radicals [ J ]. Journal of Water Process Engineering, 2016, 9: 22-28.
  • 3A Go'mez'-De Jesu's, F J Romano-Baez, L Leyva-Amezcua, et al. Biodegradation of 2,4,6 - trichlorophenol in a packed - bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation Journal of Hazardous Materials [ J ]. 2009, 161 : 1140-1149.
  • 4Jeong- Hak Choi, Young - Hun Kim. Reduction of 2, 4, 6 - trichlorophenol with zero-valent zinc and catalyzed zinc[ J]. Journal of Hazardous Materials, 2009, 166: 984-991.
  • 5Renchao Li, Xiaoying Jin, Mallavarapu Megharaj, et al. Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system[ J]. Chemical Engineering Journal, 2015, 264: 587 -594.
  • 6Lei Xu, Ruixia Yuan, Yaoguang Guo, et al. Sulfate radical-induced degradation of 2, 4, 6- trichlorophenol: A de novo formation of chlorinated compounds [ J ]. Chemical Engineering Journal, 2013, 217: 169-173.
  • 7Peidong Hu, Mingee Long. Cobalt- catalyzed sulfate radical- based advanced oxidation : a review on heterogeneous catalysts and applications [J]. Applied Catalysis B: Environmental, 2016, 181: 103-117.
  • 8Minhui Xu, Xiaogang Gu, Shuguang Lu, et al. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system [ J]. Journal of Hazardous Materials, 2015, 286: 7-14.
  • 9Jun Zhang, Xueting Shao, Chao Shi, et al. Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon [ J ]. Chemical Engineering Journal, 2013, 232: 259-265.
  • 10Y R Wang, W Chu. Photo- assisted degradation of 2, 4, 5- trichlorophenol by Electro-Fe (Ⅱ)/Oxone process using a sacrificial iron anode: Performance optimization and reaction mechanism [ J ]. Chemical Engineering Journal, 2013, 215-216: 643-650.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部