期刊文献+

基于SNR和谱熵的协作式频谱感知算法仿真研究 被引量:1

Simulation and Analysis of Cooperative Spectrum Sensing Algorithm Based on SNR and Spectrum Entropy
下载PDF
导出
摘要 目前的频谱感知算法大多受到信道衰落、噪声不确定性等因素的影响,针对此问题,提出了一种基于SNR和谱熵的协作式频谱感知算法CSSE。1)CSSE算法选择具有最大SNR的节点作为中继节点转发信号进行协作频谱感知,有效的解决信道衰落带来的影响。2)CSSE算法采用谱熵检测主用户信号,有效的解决噪声不确定性带来的影响。提出的CSSE算法在不需要知道主用户信号先验知识的情况下,不但能够有效的缓解信道衰落、噪声不确定性带来的影响,而且具有较低的频谱感知时间,具有很好的实际应用价值。仿真结果表明,相比已有的频谱感知算法,不仅检测性能得到了比较大的提高,而且频谱感知的时间也减少了近40%。 The performance of traditional spectrum sensing strategy is affected by channel fading and noise uncertainty. Aiming at the problem, a cooperative spectrum sensing algorithm CSSE based on Signal to Noise (SNR) and spectrtLm entropy, was proposed. The innovation is that: 1) the node which has maximal SNR is selected as relay node for forwarding signal. The effect of channel fading can be solved effectively.2) the CSSE adopts spectrum entropy to detect primary user signal. The effect of noise uncertainty can be solved effectively. Under the condition of no know the knowledge of primary user signal in advance, the CSSE not only can solves the effect of channel fading and noise uncertainty, but also has low sensing time. The CSSE has excellent practical application values. Simulation results show that the CSSE can achieve high detect performance in very low SNR environments. The time of spectrum sensing of the CSSE is reduced by about 40% compared to the traditional spectrum sensing strategy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第4期662-667,共6页 Journal of System Simulation
基金 国家自然科学基金(61073186 61073104) 中南林业科技大学青年科学研究基金(QJ2011002A)
关键词 频谱感知 信噪比 谱熵 协作 spectrum sensing signal to noise ratio spectrum entropy cooperative
  • 相关文献

参考文献17

  • 1F. C. Commission. Spectrum policy task force report [C]// FCC 02-155, Nov 2002. USA: FCC, 2002: 1-37.
  • 2J Mitola, G Q Maguire. Cognitive radio: Making software radios more personal [J]. IEEE Personal Communications (S1070-9916), 1999, 6(4): 13-18.
  • 3S Haykin. Cognitive radio: Brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications (S0733-8716), 2005, 23(2): 201-220.
  • 4H Urkowitz. Energy detection of unknown deterministic signals [J]. IEEE Proceedings (S0018-9219), 1967, 55(4): 9-18.
  • 5F F Digham, M S Alouini, M K Simon. On the energy detection of unknown signals over fading channels [J]. IEEE Transactions on Communications (S0090-6778), 2007, 55(1): 21-24.
  • 6J G Proakis. Digital Communications [M]. 4th ed. USA: McGraw-Hill, 2001.
  • 7R Tandra, A Sahai. Fundamental limits on detection in low SNR under noise uncertainty [C]// 2005 International Conference on Wireless Networks, Communications and Mobile Computing. USA: IEEE, 2005: 464-469.
  • 8K Kyouwoong, I A Akbar, K K Bae, U ung-sun, C M Spooner, J H Reed. Cyclostationary approaches to signal detection and classification in cognitive radio [C]//2007 2rid IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. USA: IEEE, 2007: 212-15.
  • 9刘志文,张杭,孙少凡.基于特征值的频谱感知算法仿真研究[J].系统仿真学报,2010,22(12):2805-2808. 被引量:4
  • 10S V Nagaraj. Entropy-based spectrum sensing in cognitive radio [J].Signal Processing (SO 165-1684), 2009, 89(2): 174-180.

二级参考文献22

  • 1FCC. Spectrum policy task force report, ET Cocket 02-155, Federal Communications Commission [EB/OL]. (2002-7) [2009-11]. http ://www. fcc.gov/spt f/files/2002, 2002.
  • 2Mitola J. Cognitive radio: making software radio more personal [J].IEEE Pers. Comm. (S1070-9916), 1999, 6(4): 48-52.
  • 3Cabric D, Mishra S M, Brodersen R W. Implementation issues in spectrumsensing for cognitive radios [C]// Asilomar conference on signals, systems and computers, Nov. 2004. USA: IEEE, 2004.
  • 4Tandra R, Sahai A. SNR walls for signal detection [J]. IEEE JSTSP (S1932-4553), 2008, 2(1): 4-16.
  • 5Zhuan Y, Grosspietsch J, Memik G. Spectrum Sensing using cyclostationary spectrum density for cognitive radios [C]// IEEE workshop on Signal Processing Systems, Oct 2007. USA: IEEE, 2007.
  • 6Han N, Shon S. H, Joo J O, Kim J M. Spectral correlation based signal detection method for spectrttm sensing in IEEE 802.22 WRAN systems [C]// Intern. Conf. Advanced Communication Technology, (Korea), Feb. 2006. USA: IEEE, 2006.
  • 7Bai Z D. Methodologies in spectral analysis of large dimensional random matrices, a review [J]. Statistica Sinica (S1017-0405), 1999, 9(1): 611-677.
  • 8Bai Z D, Silverstein J W. Eigenvalues of large sample covariance matrices of spiked population models [J]. Journ. of Mult. Anal (S1095-7243), 2006, 97(6): 1382-1408.
  • 9Johnstone I M. On the distribution of the largest eigenvalue in principle components analysis [J]. The Annals of Statistics (S0090-5364), 2001, 29(2): 295-327.
  • 10Feldheim. O N, Sodin S. A universality result for the smallest eigenvalues of certain sample covariance matrices [EB/OL]. (2008-12) [2009-11 ]. http://arxiv.org/abs/0812.1961 v4, 2009.

共引文献5

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部