期刊文献+

碳纳米管膜分离Li^+/Mg^(2+)的分子动力学模拟 被引量:3

Molecular Dynamics Simulation of Carbon Nanotube Membrane Separating Li^+/Mg^(2+)
下载PDF
导出
摘要 采用"扶手椅"型碳纳米管建立了连续的碳纳米管膜模型,利用分子动力学模拟方法研究了Li+和Mg2+在膜中的传导行为.模拟研究了不同管径的碳纳米管CNTs(7,7),(8,8),(9,9),(10,10),(11,11)对Li+和Mg2+的通透性,检测了两种离子进入管内时的平均力势,探索了两种离子在碳纳米管内的径向、轴向密度分布,观测了个别离子在管内的运动轨迹.结果表明,模拟中CNTs(9,9)用于有效分离Li+和Mg2+的效果较好.管径不同,导致Li+和Mg2+通量不同,平均力势(PMF)差值不同,同时离子的轨迹和径向、轴向密度分布也有所差异.总之,碳纳米管是一种可将Li+和Mg2+分离的潜在材料. Armchair-type carbon nanotubes(CNTs) were used to construct a continuous nanotube membrane model. The conductivity behaviors of Li^+ and Mg^2+ in the nanotubes were examined via molecular dynamics simulation. In the simulation, the permeability of Li^+ and Mg^2+ in CNTs ( 7,7 ), ( 8,8 ), ( 9,9 ), ( 10,10 ), ( 11,11 ) with different diameters were investigated. The potentials of mean force (PMF) for ions entering the nanotubes, radial and axial ions density distributions, and the trajectories of individual ions transporting in tubes were explored. The results indicate that CNTs (9,9) is effective in separating Li^+ and Mg^2+ in the simu- lation. With different nanotube diameters, the conductance, PMF difference, trajectories, radial and axial density distributions of Li^+ and Mg^2+ are different. In short, the carbon nanotube is a potential material for separating Li^+ and Mg^2+.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第4期925-930,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21076202)资助
关键词 碳纳米管 分子动力学模拟 Lithium Carbon nanotube Molecular dynamics simulation
  • 相关文献

参考文献25

  • 1付烨,钟辉.沉淀法分离高镁锂比盐湖卤水的研究现状[J].矿产综合利用,2010(2):30-33. 被引量:14
  • 2孙锡良,陈白珍,徐徽,石西昌.从盐湖卤水中萃取锂[J].中南大学学报(自然科学版),2007,38(2):262-266. 被引量:24
  • 3陈正炎,古伟良,陈富珍,肖宁,仇世源,阚素荣,许文江.从饱和氯化镁卤水萃取锂的流程研究[J].稀有金属,1999,23(2):95-99. 被引量:5
  • 4Iijima S. , Nature, 1991, 354, 56-58.
  • 5Song C. , Corry B. , Phys. Chem. , 2009, 113(21), 7642-7649.
  • 6Whitby M. , Cagnon L. , Thanou M. , Quirke N. , Nano Lett. , 2008, 8(9), 2632-2637.
  • 7Holt J. , Park H. , Wang Y. , Stadermann M. , Artyukhin A. , Grigoropolous C. , Noy A. , Bakajin O. , Science, 2006, 312, 1034- 1037.
  • 8Hummer G. , Rasiah J. , Nowortya J. , Nature, 2001, 414, 188-190.
  • 9Striolo A. , Nano Lett. , 2006, 6, 633-639.
  • 10Waghe A. , Rasalah J. , Hummer G. J. , Chem. Phys. , 2002, 117, 10789-10795.

二级参考文献35

共引文献39

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部