期刊文献+

Three-Steps-Meshing Based Multiple Crack Identification for Structures and Its Experimental Studies 被引量:3

Three-Steps-Meshing Based Multiple Crack Identification for Structures and Its Experimental Studies
下载PDF
导出
摘要 Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures. Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期400-405,共6页 中国机械工程学报(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos. 11176024, 51035007) National Basic Research Program of China(973 Program, Grant No. 2011CB706805) Open Research Fund Program of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, China
关键词 multiple cracks structure three steps meshing multiple cracks structure three steps meshing
  • 相关文献

参考文献4

二级参考文献50

共引文献23

同被引文献79

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部