摘要
针对横观各向同性饱和两相介质的弹塑性波动问题,建立了基于SMP破坏准则的横观各向同性饱和两相介质弹塑性动力本构模型,并建立了横观各向同性饱和两相介质弹塑性波动问题求解的时域显式有限元方法。基于上述本构模型与时域显式有限元方法进行了横观各向同性饱和两相介质弹塑性波动问题的研究。研究结果表明:横观各向同性饱和两相介质的弹塑性动力反应与其弹性动力反应有较为显著的差异,表现在前者的反应峰值相对于后者有较为明显的增大,同时二者反应时程的波形也有较大的差异。数值计算工作同时表明,时域显式有限元方法是进行横观各向同性饱和两相介质弹塑性波动问题计算分析的一种有效方法。
In this paper , an elasto-plastic dynamic constitutive model for transversely isotropic fluid-saturat ed porous media is constructed based on the SMP failure criterion , and the time-domain explicit finite ele ment method for the wave propagation in transversely isotropic elasto-plastic fluid-saturated porous media is put forward. The wave propagation in transversely isotropic elasto-plastic fluid-saturated porous media is in vestigated based on the dynamic constitutive model and the time-domain explicit finite element method giv en out in this paper , and calculating results are compared with those of elastic wave propagation. Calculat ing results show that the dynamic response of transversely isotropic elasto-plastic fluid-saturated porous me dia is remarkably different from that of elastic porous media , that is the peak value of elasto-plastic dynam ic response has remarkable increase relative to that of elastic dynamic response , and the figures of time his tory are different significantly from each other for elasto-plastic dynamic response and elastic dynamic re sponse of transversely isotropic fluid-saturated porous media. In the meanwhile , numerical calculations car ried out in this paper indicate that the time-domain explicit finite element method is effective for the wave propagation in transversely isotropic elasto-plastic fluid-saturated porous media.
出处
《水利学报》
EI
CSCD
北大核心
2013年第3期312-318,共7页
Journal of Hydraulic Engineering
基金
国家自然科学基金面上项目(51178011)
国家重点基础研究发展计划973计划项目(2011CB013602)
北京市科技新星计划(A类)项目(2008A016)
2011年度北京市属高校人才强教深化计划中青年骨干人才项目(PHR20110808)
北京工业大学城市与工程安全减灾教育部重点实验室开放课题资助项目
关键词
横观各向同性
饱和两相介质
波动
弹塑性
时域显式有限元法
SMP破坏准则
transversely isotropic
fluid-saturated porous media
wave propagation
elasto-plastic
time-do main explicit finite element method
SMP failure criterion