期刊文献+

延迟D-策略Geo/G/1排队系统的队长分布及容量的优化设计 被引量:7

Queue size distribution and capacity optimum design for Geo/G/1 queueing system with delayed D-policy
原文传递
导出
摘要 考虑延迟D-策略离散时间Geo/G/1排队系统,使用全概率分解技术,从任意初始状态出发,研究了队长的瞬态和稳态性质,推导出了在任意时刻n^+瞬态队长分布的z-变换的递推表达式和稳态队长分布的递推表达式,并获得稳态队长的随机分解结果,同时得到了系统在三种任意时刻(n^-,n,n^+)处稳态队长分布的重要关系.最后,通过数值实例,讨论了稳态队长分布对系统参数的敏感性,并阐述了获得便于计算的稳态队长分布的表达式在系统容量优化设计中的重要应用价值. This paper considers the discrete-time Geo/G/1 queueing system with delayed D-policy. By using the total probability decomposition technique, we study the transient and equilibrium properties of the queue length from the beginning of the any initial state, obtain both the recursion expressions of the z-transformation of the transient queue length distribution at any time n+ and the recursion expressions of the steady state queue length distribution, and then we give the stochastic decomposition of the queue length in equilibrium. The important relations between the steady state queue length distributions at different epochs (n , n, n+) are discovered. Finally, by numerical examples we discuss the sensitivity of the steady state queue length distribution towards system parameters and illustrate the important value of the expressions of the steady state queue length distribution for calculating conveniently in the system capacity design.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第4期996-1005,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71171138)
关键词 离散时间Geo G 1排队 延迟D-策略 全概率分解技术 队长分布 随机分解 系统容量的优化设计 discrete-time Geo/G/1 queue delayed D-policy total probability decomposition technique queue length distribution stochastic decomposition system capacity optimum design
  • 相关文献

参考文献19

  • 1Hunter J J. Mathematical techniques of applied probability, Vol. II, discrete time models: Techniques andapplications[M]. New York: Academic Press, 1983.
  • 2Atencia I, Moreno P. Discrete-time Geo[X]/GH/1 retrial queue with Bernoulli feedback[J]. Computers and Math- ematics with Applications, 2004, 47:1273 1294.
  • 3Tian N S, Ma Z Y, Liu M X. The discrete time Geom/Geom/1 queue with multiple working vacations[J]. Applied Mathematical Modelling, 2008, 32(12): 2941-2953.
  • 4Li J H, Tian N S, Liu W Y. Discrete-time GI/Geo/1 queue with multiple working vacations[J]. Queueing Systems, 2007, 56: 53-63.
  • 5Tang Y H, Yun X, Huang S J. Discrete-time GeoZ/G/1 queue with unreliable server and multiple adaptive delayed vacation[J]. Journal of Computational and Applied Mathematics, 2008, 220: 439-455.
  • 6Yu M M, Tang Y H, Fkl Y H, et al. GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2170-2184.
  • 7Yinghui TANG,Miaomiao YU,Cailiang LI.Geom/G_1,G_2/1/1 REPAIRABLE ERLANG LOSS SYSTEM WITH CATASTROPHE AND SECOND OPTIONAL SERVICE[J].Journal of Systems Science & Complexity,2011,24(3):554-564. 被引量:6
  • 8Luo C Y, Xiang K L, Yu M M, et al. Recursive solution of queue length distribution for Geo/G/1 queue with single server vacation and variable input rate[J]. Computers and Mathematics with Applications, 2011, 61(9): 2401-2411.
  • 9魏瑛源,唐应辉,顾建雄.延迟N-策略Geo/G/1排队系统的队长分布及数值计算[J].系统工程理论与实践,2011,31(11):2151-2160. 被引量:17
  • 10Balachandran K R. Control policies for a single server system[J]. Management Science, 1973, 19(9): 1013-1018.

二级参考文献22

  • 1刘名武,马永开.延迟启动-关闭型的N-策略M/G/1排队系统队长分布[J].系统工程学报,2010,25(1):104-110. 被引量:9
  • 2M. L. Chaudhry and U. C. Gupta, Queue-length and waiting time distributions of discrete-time GI*/Geom/1 queueing systems with early and late arrivals, Queuing Systems, 1997, 25: 307-334.
  • 3M. L. Chaudhry, J. G. C. Templeton, and U. C. Gupta, Analysis of the discrete-time GI/Geom(n) /1/N queue, Computers and Mathematics with Applications, 1996, 31:59 68.
  • 4Y. H. Tang and X. W. Tang, Queueing Theories Foundations and Analysis Techniques, Science Press, Beijing, 2006.
  • 5K. C. Madan, An M/G/1 queueing system with additional optional service and no waiting capacities, Microelectronics and Reliability, 1994, 34:521 527.
  • 6K. P. Sapna, An M/G/1 type queueing system with non-perfect servers and no waiting capacity, Microelectronics and Reliability, 1996, 36:697 700.
  • 7. N. S. Tian, X. L. Xu, and Z. Y. Ma, Discrete-Time Queueing Theory, Science Press, Beijing, 2008.
  • 8D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Proc. Cambridge Philos. Soc., 1955, 51: 433-441.
  • 9J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. II, Discrete Time Models: Techniques and Applications, Academic Press, New York, 1983.
  • 10YadinM, Naor P. Queueing systems with a removable service station[J]. Operation Research Quarterly, 1963 14(4): 393-405.

共引文献29

同被引文献44

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部