期刊文献+

基于特征线段分析的建筑物面识别方法

Building facet recognition by analyzing feature line segment
原文传递
导出
摘要 将建筑物划分为单个的建筑物面进行处理可以有效降低街景图像理解的复杂度.因此,文中提出一种基于建筑物特征线段累积的动态规划方法用于检测街景图像中各个建筑物面的信息.该方法结合系统工程分析问题的方法,根据图像建筑物区域直线特征丰富的特点,分析不同朝向类型的建筑物面中水平直线段透视投影后的变化,建立相应的特征累积数学模型量化建筑物区域蕴含的直线段特征,并给出相应的算法优化平滑特征线段累积结果,最后证明了根据特征线段累积结果识别建筑物面的过程符合动态规划最优性原理,通过动态规划的方法求解识别目标区域内所包含的各类建筑物面.实验证明,该文的方法可以准确的识别街景图像中各类建筑物面,而且算法复杂度更低,处理速度更快. It would be more easily to process the image of street scene by recognizing every building facet first. In this paper, a novelty method which recognizes every building facet by analyzing feature line segment of buildings with technique of system engineering is proposed. Beginning, the feature line segments extracted from the area of buildings are accumulated with the mathematics' model which deduced by the relation of horizontal lines between the real world and image. Then the result of feature accumulation is refined by a new method. At last, each building facet could be recognized by dynamic programming because the building facet recognition by analyzing feature line segments has been proved to comply with the optimality principle. The experiment shows that our method could recognize building facet exactly in many complex environments and need less time in the fields of building facet recognition.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第4期1050-1057,共8页 Systems Engineering-Theory & Practice
基金 国家高技术研究发展计划(863计划)(2009AA01Z328) 国家自然科学基金(60773023 60803101)
关键词 建筑物面 特征线段累积 特征优化 动态规划 building facet feature line segment accumulation feature refined dynamic programming
  • 相关文献

参考文献19

  • 1Xiao J X, Fang T, Tan P, et al. Image-based facade modeling[J]. ACM Transaction on Graphics - Proceedings of ACM SIGGRAPH Asia, 2008, 27(5): 161 170.
  • 2Yang X Y, Zhang T X, Lu Y. Building recognition based on geometric model in FLIR image sequences[J]. Journal of Infrared, Millimeter and Terahertz Waves, 20091 30(5): 468-483.
  • 3Zhang W, Kosecka J. Localization based on building recognition[C]//Computer Vision and Pattern Recognition (CVPR), San Diego, USA, June 20-26, 2005: 21-28.
  • 4Li J, Allinson N M. Subspace learning-based dimensionality reduction in building recognition[J]. Neurocomputing, 2009, 73: 324-330.
  • 5Hoiem D, Efros A A, Hebert M. Closing the loop on scene interpretation[C]// Computer Vision and Pattern Recognition, Anchorage, USA, June 24-26, 2008: 1-8.
  • 6汪行,陈学佺,金敏.线段提取在高分辨率遥感图像建筑物识别中的应用[J].计算机辅助设计与图形学学报,2005,17(5):928-934. 被引量:11
  • 7康志忠,张祖勋.基于灭点理论和物方平行线几何约束的建筑墙面纹理自动纠正[J].武汉大学学报(信息科学版),2004,29(4):333-337. 被引量:9
  • 8陈付幸,王润生.一种新的消失点检测算法[J].电子与信息学报,2006,28(8):1458-1462. 被引量:8
  • 9汪哲慎,李翠华.基于改进Hough变换的建筑目标搜索与识别[J].中国图象图形学报(A辑),2005,10(4):463-467. 被引量:9
  • 10Li Z, Li H S. Building line feature acquisition based on morphologic filter for infrared images recognition[C]// Proceedings of SPIE: Multispectral Image Acquisition and Processing, Yichang, China, Oct.30-Nov.1, 2009, 7494: 74942A.

二级参考文献52

  • 1王丽君,杨宜禾,赵亦工,向健勇.高阶分形特征在目标特征提取中的应用[J].红外与毫米波学报,1996,15(4):271-278. 被引量:3
  • 2章新华,林良骥,王骥程.目标识别中信息融合的准则和方法[J].软件学报,1997,8(4):303-307. 被引量:4
  • 3张祖勋 张剑清 张世兴.单像房屋三维重建.海峡两岸自动化工程测量研讨会[Z].台北,2001..
  • 4Ballard D H, Brown C M. Computer Vision[ M]. Englewood Cliffs,New Jersey: Prentice-Hall Inc. , 1982.
  • 5Hough P V C. Machine analysis of bubble chamber pictures[ A]. In:International Conference on High Energy Accelerators and Instrumentation [ C ] , Geneva, Switzerland, 1959.
  • 6Clark P, Mirmehdi M. Location and recovery of text on oriented surfaces [ A ]. In: Proceedings of SPIE conference on Document Recognition and Retrieval Ⅷ[ C ], San Jose, California, USA,2000,3967 : 267 - 277.
  • 7Du Xun, Ahah Stanley C, Stribling Bruce. 3-D orientation vector estimation for sub-components of space object imagery [ A ]. In:Proceedings of the 1997 Signal Processing, Sensor Fusion, and Target Recognition Conference[ C ] , Orlando. FLA. 1997, 395 - 405.
  • 8Lappas Pelopidas, Carter John N, Damper Robert I. Object tracking via the dynamic velocity Hough transform[ A ]. In: Proceedings IEEE International Conference on Image Processing [ C ] , Thessaloniki,Greece, 2001:371 -374.
  • 9Kalviainen H, Hirvonen P, Xu L, et al. Probabilistic and nonprobabilistic Hough transforms: overview and comparisons[ J]. Image and Vision Computing, 1995, 13(4) : 239 - 252.
  • 10Castleman K R. Digital Image Processing [ M ]. Englewood Cliffs,New Jersey: Prentice-Hall Inc, , 1996.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部