期刊文献+

一种带规范知识引导的改进人工蜂群算法 被引量:8

An Improved Artificial Bee Colony Algorithm with Guided Normative Knowledge
下载PDF
导出
摘要 针对数值函数优化问题,提出一种改进的人工蜂群算法.受文化算法双层进化空间的启发,利用信度空间中的规范知识引导搜索区域,自适应调整算法的搜索范围,提高算法的收敛速度和勘探能力.为保持种群多样性,设计一种种群分散策略,平衡群体的全局探索和局部开采能力,并且在各个进化阶段采用不同的方式探索新的位置.通过对多种标准测试函数进行实验并与多个近期提出的人工蜂群算法比较,结果表明该算法在收敛速度和求解质量上均取得较好的改进效果. An improved artificial bee optimization problems. Inspired algorithm takes advantage of the control the radius of the local colony (ABC) algorithm is proposed to solve numerical function by the double evolutionary space of cultural algorithm, the proposed normative knowledge of reliability space to guide the search region and search space self-adaptively. Thus, the convergence speed and the exploitation ability are enhanced. In order to maintain diversity, a dispersal strategy is designed to balance global exploration and local exploitation of population capacity. Moreover, different approaches are used to explore new positions in various evolutionary stages. The experimental results demonstrate that the proposed algorithm outperforms existing artificial bee colony algorithms on a number of standard test functions both in convergence speed and solution quality.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第3期307-314,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.71231003) 福建省自然科学基金项目(No.2012J01262)资助
关键词 人工蜂群算法 数值函数优化 规范知识 文化算法 Artificial Bee Colony Algorithm, Numerical Function Optimization, Normative Knowledge, Cultural Algorithm
  • 相关文献

参考文献21

  • 1Karaboga D. An Idea Based on Honey Bee Swarm for NumericalOptimization. Technical Report, TR06. Kayseri, Turkey: ErciyesUniversity, 2005.
  • 2Seeley T D. The Wisdom of The Hive; The Social Physiology ofHoney Bee Colonies. Cambridge, USA : Harvard University Press,1995.
  • 3Karaboga D, Basturk B. A Powerful and Efficient Algorithm forNumerical Function Optimization : Artificial Bee Colony Algorithm.Journal of Global Optimization, 2007, 39(3): 459-471.
  • 4Karaboga D, Basturk B. On the Performance of Artificial Bee ColonyAlgorithm. Applied Soft Computing, 2008, 8(1): 687-697.
  • 5胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982. 被引量:63
  • 6毕晓君,王艳娇.加速收敛的人工蜂群算法[J].系统工程与电子技术,2011,33(12):2755-2761. 被引量:44
  • 7Karaboga D, Akay B. Artificial Bee Colony Algorithm on TrainingArtificial Neural Networks // Proc of the 15th IEEE Signal Process-ing and Communications Applications Conference. London, UK,2007; 1-4.
  • 8Duan Haibin, Xu Chunfang, Xing Zhihui. A Hybrid Artificial BeeColony Optimization and Quantum Evolutionary Algorithm for Con-tinuous Optimization Problems. International Journal of Neural Sys-tems, 2010, 20(1): 39-50.
  • 9Zhu Guopu, Kwong S. Gbest—Guided Artificial Bee Colony Algo-rithm for Numerical Function Optimization. Applied Mathematicsand Computation, 2010, 217(7): 3166-3173.
  • 10Banharnsakun A, Achalakul T, Sirinaovakul B. The Best-90-farSelection in Artificial Bee Colony Algorithm. Applied Soft Compu-ting, 2010,11(2): 2888-2901.

二级参考文献68

共引文献128

同被引文献51

  • 1薛文涛,吴晓蓓,徐志良.基于双变异算子的免疫规划[J].控制与决策,2007,22(12):1411-1416. 被引量:8
  • 2Karaboga D. An idea based on honey bee swarm for numerical optimi- zation [ R ]. Kayseri : Erciyes University,2005.
  • 3Ramanathan R, Kalaiarasi K, Prabha D. Improved wavelet based compression with adaptive lifting scheme using artificial bee colony al- gorithm [ J ]. International Journal of Advanced Research in Computer Engineering & Technology,2013,2 (4) : 1549-1554.
  • 4Yildiz A R. A new hybrid artificial bee colony algorithm for robust op- timal design and manufacturing[ J]. Applied Soft Computing,2013, 13(5) :2906-2912.
  • 5Karaboga N, Latifoglu F. Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm[ J]. Engineering Ap- plications of Artificial Intelliclence.2013 .26( 2 ) ~677-684.
  • 6Alvarado-Iniesta A, Garcia-Alcaraz J L, Rodriguez-Borbon M I, et al. Optimization of the material flow in a manufacturing plant by use of artificial bee colony algorithm [ J ]. Expert Systems with Applica- tions,2013,40(12) :4785-4790.
  • 7Akay B, Karaboga D. Parameter tuning for the artificial bee colony al- gorithm[C]//Proc of the 1st International Conference on Computa- tional Collective Intelligence. Berlin: Springer-Verlag, 2009 : 608- 619.
  • 8杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513. 被引量:134
  • 9Hai-bin Duan,Guan-jun Ma,De-lin Luo.Optimal Formation Reconfiguration Control of Multiple UCAVs Using Improved Particle Swarm Optimization[J].Journal of Bionic Engineering,2008,5(4):340-347. 被引量:16
  • 10文诗华,郑金华,李密青.多目标进化算法中变异算子的比较与研究[J].计算机工程与应用,2009,45(2):74-78. 被引量:16

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部