期刊文献+

求解约束优化问题的一种新的遗传算法 被引量:2

A Novel Genetic Algorithm for Solving Constrained Optimization Problems
下载PDF
导出
摘要 提出一种新的求解约束优化问题的遗传算法,算法通过重新定义可行解与不可行解的适应度函数分别对它们进行选择,有效避免了惩罚函数法引入参数所带来的困难,重新设计的交叉算子使得算法对解空间的寻优范围扩大了.数值实验结果表明算法具有较好的鲁棒性,且对最优解位于约束边界上的一类问题具有很大优势. A novel genetic algorithm for solving constrained optimization is proposed. Feasible and infeasible solution are chosen, separately, via their re-defined fitness function, which effectively avoids the difficulties caused by introducing parameters in penalty function method. Re-designed crossover operators expand the search scope of the proposed algorithm in the optimal solution space. The numerical experience results show that the proposed algorithm has good robust,and has the great advantage for a class of problems whose optimal solution is located on the constraint boundary.
作者 梁昔明 肖伟
出处 《应用数学》 CSCD 北大核心 2013年第2期308-313,共6页 Mathematica Applicata
基金 北京市自然科学基金资助项目(4122022) 北京市属高等学校人才强教计划资助项目(201107123) 北京建筑工程学院博士启动基金项目
关键词 约束优化问题 可行解 不可行解 遗传算法 Constrained optimization problem Feasible solution Infeasible solution Genetic algorithm
  • 相关文献

参考文献4

  • 1Holland J H. Adaptation in Natural and Artificial Systems[M]. Cambridge: MIT Press,1992.
  • 2Gen M, CHENG Runwei. Genetic Algorithms and Engineering Design[M]. New York: Wiley- Interscience, 2000.
  • 3Liang J J, Runarsson T P, Mezura-Montes E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization[C]//Technical Report. Singapore: Nanyang Technological University,2006.
  • 4王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116

二级参考文献4

共引文献115

同被引文献29

  • 1田方,谢里阳,陶柯,张禹.基于惩罚和修复策略的约束优化遗传算法[J].机械设计,2005,22(11):7-9. 被引量:8
  • 2Long W,Liang X M,Huang Y F,et al.A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization[J].Computer-Aided Design,2013,45(12):1562-1574.
  • 3Amirjanov A.The development of a changing range genetic algorithm[J].Computer Methods in Applied Mechanics and Engieering,2006,195(19-22):2495-2508.
  • 4Ma H P,Simon D.Blended biogeography-based optimization for constrained optimization[J].Engineering Applications of Artificial Intelligence,2011,44(3):517-525.
  • 5Le Riche R G,Knopf-Lenoir C,Haftka R T.A segregated genetic algorithm for constrained structural optimization[C]//Proceedings of the 6th International Conference on Genetic Algorithms.San Francisco,CA:Morgan Kaufman,1995:558-565.
  • 6Yang X S.Nature inspired meta-heuristic algorithms[M].2nd ed.Frome,UK:Luniver Press,2010:97-104.
  • 7Wang Y,Cai Z,Zhou Y,et al.Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J].Structural Multidiscipline Optimization,2009,37(4):395-413.
  • 8Wang Y,Cai Z,Zhou Y.Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization[J].International Journal for Numerical Methods in Engineering,2009,77(11):1501-1534.
  • 9Kheawhom S.Efficient constraint handling scheme for differential evolution algorithm in solving chemical engineering optimization problem[J].Journal of Industrial and Engineering Chemistry,2010,16:620-628.
  • 10Zahara E,Kao Y T.Hybrid Nelder-Mead simplex search particle swarm optimization for constrained engineering design problems[J].Expert Systems with Applications,2009,36(2):3880-3886.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部