期刊文献+

脉冲集值微分方程解的存在性 被引量:2

Existence of Solutions of Impulsive Set Differential Equations
下载PDF
导出
摘要 利用Leray-Schauder不动点定理,证明一类一阶脉冲集值微分方程解的存在性. It obtains the existence of the first order impulsive set differential equations by the Leray-Schauder fixed point theorem.
出处 《应用数学》 CSCD 北大核心 2013年第2期326-332,共7页 Mathematica Applicata
关键词 脉冲集值微分方程 存在性 不动点定理 Impulsive set differential equation Existence Fixed point theorem
  • 相关文献

参考文献10

  • 1Lakshmikantham V,Bhasker T G,Devi J V. Theory of Set Differential Equations in Metric Spaces[M]. UK:Cambridge Scientific, 2006.
  • 2Lakshmikantham V, Leela S, Vastala A S. Interconnection between set and fuzzy differential equations [J]. Nonlinear Anal. ,2003,54(2):351-360.
  • 3Bhaskar T G, Lakshmikantham V,Devi V J. Nonlinear variation of parameters formula for set differential equations in a metric space[J]. Nonlinear Anal. ,2005,63(5-7):735-744.
  • 4Marek T M, Mariusz M. Stochastic set differential equations[J]. Nonlinear Anal. , 2010,72 (3-4): 1247- 1256.
  • 5Marek T M. Second type Hukuhara differentiable solutions to the delay set-valued differential equations [J]. Appl. Math. Comp. ,2012,218(18) :9427-9437.
  • 6Bashir A,Sivasundaram S. The monotone iterative technique for impulsive hybrid set valued integro-differential equations[J]. Nonlinear Anal. , 2006,65 (12) : 2260-2276.
  • 7LI Lei, HONG Shihuang. Exponential stability for set dynamic equations on time scales[J]. Comp. Appl. Math. , 2011,235 (17) : 4916-4924.
  • 8HONG Shihuang. Stability criteria for set dynamic equations on time scales[J]. Computers and Mathematics with Applications, 2010,59 (11):3444-3457.
  • 9Phu N D, Quang L T,Tung T T. Stability criteria for set control differential equations[J]. Nonlinear Anal. ,2008,69(11) :3715-3721.
  • 10Devi j V, Naidu C A. Stability results for set differential equations involving causal operators with memory[J]. Eur. J. Pure Appl. Math. ,2012,5(2):187-196.

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部