期刊文献+

食物受限人口模型中非线性延迟微分方程数值解的振动性(英文) 被引量:2

Oscillations of Numerical Solution for Nonlinear Delay Differential Equations in Food Limited Population Model
下载PDF
导出
摘要 本文讨论食物受限人口模型中的一个非线性延迟微分方程数值解的振动性.通过应用两种θ-方法,即线性θ-方法和单腿θ-方法,构造指数θ-方法,得到数值解振动的条件,进一步考虑非振动解的渐近行为,最后给出两个数值算例. The paper deals with the oscillations of numerical solutions for a nonlinear delay differential equation in food limited population model.The exponential θ-method is constructed by using two θ-methods,namely the linear θ-method and the one-leg θ-method.Some conditions under which the numerical solutions oscillate are obtained.Moreover,asymptotic behavior of non-oscillatory solutions is considered.Finally,two numerical examples are given.
作者 王琦 温洁嫦
出处 《应用数学》 CSCD 北大核心 2013年第2期360-366,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China (11201084)
关键词 非线性延迟微分方程 数值解 振动性 渐近行为 Nonlinear delay differential equation Numerical solution Oscillation Asymptotic behavior
  • 相关文献

参考文献1

二级参考文献14

  • 1Mackey M C, Glass L. Oscillation and chaos in physiological control system[J]. Science, 1977, 197: 287-289.
  • 2Kong Q. Oscillation and asymptotic behavior of a discrete logistic model[J]. Rocky Mount. J. Math., 1995, 25: 339-349.
  • 3Liang H Y, Li Q L, Zhang Z G. New oscillatory criteria for higher-order nonlinear neutral delay differential equation[J]. Nonlinear Analysis TMA., 2008, 69: 1719-1731.
  • 4Peng D H, Han M A, Wang H Y. Linearized oscillations of first-order nonlinear neutral delay difference equations[J]. Comput. Math. Appl., 2003, 45: 1785-1796.
  • 5Saker S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales[J]. J. Comput. Appl. Math., 2006, 187: 123-141.
  • 6Sun Y G, Saker S H. Oscillation for second-order nonlinear neutral delay difference equations[J]. Appl. Math. Comput., 2005, 163: 909-918.
  • 7Zaghrout A, Ammar A, El-Sheikh M M A. Oscillation and global attractivity in delay equation of population dynamics[J]. Appl. Math. Comput., 1996, 77: 195-204.
  • 8Liu M Z, Gao J F, Yang Z W. Oscillation analysis of numerical solution in the θ-methods for equation x'(t) + ax(t) + alx([t - 1]) = 0[J]. Appl. Math. Comput., 2007, 186: 566-578.
  • 9Liu M Z, Gao Jianfang, Yang Z W. Preservation of oscillations of the Runge-Kutta method for equation x'(t) + ax(t) + alx([t - 1]) = 0[J]. Comput. Math. Appl., 2009, 58: 1113-1125.
  • 10Kubiaczyk I, Saker S H. Oscillation and stability in nonlinear delay differential equations of population dynamics[J]. Math. Comput. Model., 2002, 35: 295-301.

共引文献5

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部