摘要
本文讨论食物受限人口模型中的一个非线性延迟微分方程数值解的振动性.通过应用两种θ-方法,即线性θ-方法和单腿θ-方法,构造指数θ-方法,得到数值解振动的条件,进一步考虑非振动解的渐近行为,最后给出两个数值算例.
The paper deals with the oscillations of numerical solutions for a nonlinear delay differential equation in food limited population model.The exponential θ-method is constructed by using two θ-methods,namely the linear θ-method and the one-leg θ-method.Some conditions under which the numerical solutions oscillate are obtained.Moreover,asymptotic behavior of non-oscillatory solutions is considered.Finally,two numerical examples are given.
出处
《应用数学》
CSCD
北大核心
2013年第2期360-366,共7页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China (11201084)
关键词
非线性延迟微分方程
数值解
振动性
渐近行为
Nonlinear delay differential equation
Numerical solution
Oscillation
Asymptotic behavior