期刊文献+

求广义线性比试和问题全局解的新方法(英文) 被引量:1

A New Approach for Solving Generalized Linear Fractional Programming
下载PDF
导出
摘要 为确定广义线性比式和规划问题(GFP)的全局最优解,提出一个新的分支定界方法.在算法中,分支过程采用单纯形对分规则,且界的估计通过一些线性规划问题的求解完成.给出算法的收敛性证明.数值试验结果显示算法是有效可行的. This paper presents a new branch and bound algorithm for globally solving generalized linear fractional programming (GFP).In this algorithm,a well known simplicial subdivision is used in the branching procedure and the bound estimation is performed by solving certain linear programs.The convergence of this algorithm is established,and some experiments are reported to show the feasibility of the proposed algorithm.
出处 《应用数学》 CSCD 北大核心 2013年第2期438-445,共8页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China (11171094) the Doctor Scientific Research Foundation of Henan Normal University (QD12103)
关键词 全局优化 广义线性比式规划 分支定界 线性松弛 Global optimization Generalized linear fractional programming Branch and bound Linear relaxation
  • 相关文献

参考文献17

  • 1Colantoni C S, Manes R P, Whinston A. Programming, profit rates, and pricing decisions[J]. Accounting Review, 1969,44: 467-481.
  • 2Rao M R. Cluster analysis and mathematical, programming[J]. J. Amer. Statist. Assoc. , 1971,66: 622- 626.
  • 3Konno H,Watanabe H. Bond portfolio optimization problems and their applications to index tracking[J]. J. Oper. Soc. Japan. , 1996,39 : 295-306.
  • 4Charnes A,Cooper W W. Programming with linear fractional programming[J]. Nav. Res. Log. Quart. , 1962,9: 181-186.
  • 5Konno H,Yajima T. Parametric simples algorithm for solving a special class of nonconvex minimization problems[J]. J. Global Optim. , 1991,1: 65-81.
  • 6Konno H, Yamashita H. Minimizing sums and products of linear fractional functions over a polytope[J]. Nay. Res. Log. Quart. ,1999,46: 583-596.
  • 7Falk J E, Palocsay S W. Image space analysis of generalized fractional programs [J]. J. Global Optim. , 1994,4: 63-88.
  • 8Phuong N T H ,Tuy H. A unified monotonic approach to generalized linear fractional programming[J]. J. Global Optim. , 2003,26 : 229-259.
  • 9Kuno T. A branch-and-bound algorithms for maximizing the sum of several linear fractional functions[J]. J. Global Optim. , 2002,22 : 155-174.
  • 10JI Ying,ZHANG Kecun, QU Shaojian. A deterministic global optimization algorithm[J]. Appl. Math. Comput. ,2007,185: 382-387.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部